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Key Messages

MIDWEST18
1. In the next few decades, longer growing seasons and rising carbon dioxide levels will  
 increase yields of some crops, though those benefits will be progressively offset by extreme   
 weather events. Though adaptation options can reduce some of the detrimental effects, in the  
 long term, the combined stresses associated with climate change are expected to decrease   
 agricultural productivity. 

2. The composition of the region’s forests is expected to change as rising temperatures drive 
 habitats for many tree species northward. The role of the region’s forests as a net absorber of   
 carbon is at risk from disruptions to forest ecosystems, in part due to climate change. 

3. Increased heat wave intensity and frequency, increased humidity, degraded air quality, and   
 reduced water quality will increase public health risks. 

4. The Midwest has a highly energy-intensive economy with per capita emissions of greenhouse 
 gases more than 20% higher than the national average. The region also has a large and    
 increasingly utilized potential to reduce emissions that cause climate change. 

5. Extreme rainfall events and flooding have increased during the last century, and these trends   
 are expected to continue, causing erosion, declining water quality, and negative impacts on   
 transportation, agriculture, human health, and infrastructure.

6. Climate change will exacerbate a range of risks to the Great Lakes, including changes in the range  
 and distribution of certain fish species, increased invasive species and harmful blooms of algae,   
 and declining beach health. Ice cover declines will lengthen the commercial navigation season.

The Midwest has a population of more than 61 million people 
(about 20% of the national total) and generates a regional 
gross domestic product of more than $2.6 trillion (about 19% 
of the national total).1 The Midwest is home to expansive agri-
cultural lands, forests in the north, the Great Lakes, substantial 
industrial activity, and major urban areas, including eight of the 
nation’s 50 most populous cities. The region has experienced 
shifts in population, socioeconomic changes, air and water 
pollution, and landscape changes, and exhibits multiple vulner-
abilities to both climate variability and climate change. 

In general, climate change will tend to amplify existing climate-
related risks from climate to people, ecosystems, and infra-
structure in the Midwest (Ch. 10: Energy, Water, and Land). 
Direct effects of increased heat stress, flooding, drought, and 
late spring freezes on natural and managed ecosystems may 
be multiplied by changes in pests and disease prevalence, in-
creased competition from non-native or opportunistic native 
species, ecosystem disturbances, land-use change, landscape 
fragmentation, atmospheric pollutants, and economic shocks 
such as crop failures or reduced yields due to extreme weather 

events. These added stresses, when taken collectively, are 
projected to alter the ecosystem and socioeconomic patterns 
and processes in ways that most people in the region would 
consider detrimental. Much of the region’s fisheries, recre-
ation, tourism, and commerce depend on the Great Lakes and 
expansive northern forests, which already face pollution and 
invasive species pressure that will be exacerbated by climate 
change.

Most of the region’s population lives in cities, which are par-
ticularly vulnerable to climate change related flooding and life-
threatening heat waves because of aging infrastructure and 
other factors. Climate change may also augment or intensify 
other stresses on vegetation encountered in urban environ-
ments, including increased atmospheric pollution, heat island 
effects, a highly variable water cycle, and frequent exposure to 
new pests and diseases. Some cities in the region are already 
engaged in the process of capacity building or are actively 
building resilience to the threats posed by climate change. The 
region’s highly energy-intensive economy emits a dispropor-
tionately large amount of the gases responsible for warming 
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the climate (called greenhouse gases or heat-trapping gases). 
But as discussed below, it also has a large and increasingly real-
ized potential to reduce these emissions.

The rate of warming in the Midwest has markedly accelerated 
over the past few decades. Between 1900 and 2010, the av-

erage Midwest air temperature increased by more than 1.5°F 
(Figure 18.1). However, between 1950 and 2010, the average 
temperature increased twice as quickly, and between 1980 and 
2010, it increased three times as quickly as it did from 1900 to 
2010.1 Warming has been more rapid at night and during win-
ter. These trends are consistent with expectations of increased 
concentrations of heat-trapping gases and observed changes 
in concentrations of certain particles in the atmosphere.1,2

The amount of future warming will depend on changes in the 
atmospheric concentration of heat-trapping gases. Projections 
for regionally averaged temperature increases by the middle 
of the century (2046-2065) relative to 1979-2000 are approxi-
mately 3.8°F for a scenario with substantial emissions reduc-
tions (B1) and 4.9°F with continued growth in global emissions 
(A2). The projections for the end of the century (2081-2100) 
are approximately 5.6°F for the lower emissions scenario and 
8.5°F for the higher emissions scenario (see Ch. 2: Our Chang-
ing Climate, Key Message 3).3

In 2011, 11 of the 14 U.S. weather-related disasters with damag-
es of more than $1 billion affected the Midwest.5 Several types 
of extreme weather events have already increased in frequency 
and/or intensity due to climate change, and further increases 
are projected (Ch. 2: Our Changing Climate, Key Message 7).6

 

Key Message 1: Impacts to Agriculture

In the next few decades, longer growing seasons and rising carbon dioxide levels will  
increase yields of some crops, though those benefits will be progressively offset by  

extreme weather events. Though adaptation options can reduce some of the detrimental 
effects, in the long term, the combined stresses associated with climate change  

are expected to decrease agricultural productivity. 

Agriculture dominates Midwest land use, with more than two-
thirds of land designated as farmland.3 The region accounts 
for about 65% of U.S. corn and soybean production,7 mostly 
from non-irrigated lands.1 Corn and soybeans constitute 85% 
of Midwest crop receipts, with high-value crops such as fruits 
and vegetables making up most of the remainder.8 Corn and 
soybean yields increased markedly (by a factor of more than 5) 
over the last century largely due to technological innovation, 
but are still vulnerable to year-to-year variations in weather 
conditions.9

The Midwest growing season lengthened by almost two weeks 
since 1950, due in large part to earlier occurrence of the last 
spring freeze.10 This trend is expected to continue,3,11 though 
the potential agricultural consequences are complex and 
vary by crop. For corn, small long-term average temperature 
increases will shorten the duration of reproductive develop-
ment, leading to yield declines,12 even when offset by carbon 
dioxide (CO2) stimulation.13 For soybeans, yields have a two in 

three chance of increasing early in this century due to CO2 fer-
tilization, but these increases are projected to be offset later in 
the century by higher temperature stress14 (see Figure 18.2 for 
projections of increases in the frost-free season length and the 
number of summer days with temperatures over 95°F).

Future crop yields will be more strongly influenced by anoma-
lous weather events than by changes in average temperature 
or annual precipitation (Ch. 6: Agriculture). Cold injury due to 
a freeze event after plant budding can decimate fruit crop pro-
duction,15 as happened in 2002, and again in 2012, to Michi-
gan’s $60 million tart cherry crop. Springtime cold air outbreaks 
(at least two consecutive days during which the daily average 
surface air temperature is below 95% of the simulated average 
wintertime surface air temperature) are projected to continue 
to occur throughout this century.16 As a result, increased pro-
ductivity of some crops due to higher temperatures, longer 
growing seasons, and elevated CO2 concentrations could be 
offset by increased freeze damage.17 Heat waves during pol-

Figure 18.1. Annual average temperatures (red line) across 
the Midwest show a trend towards increasing temperature. 
The trend (dashed line) calculated over the period 1895-2012 
is equal to an increase of 1.5°F. (Figure source: updated from 
Kunkel et al. 20134).

Temperatures are Rising in the Midwest
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lination of field crops such as corn and soybean also 
reduce yields (Figure 18.3).12 Wetter springs may re-
duce crop yields and profits,18 especially if growers 
are forced to switch to late-planted, shorter-season 
varieties. A recent study suggests the volatility of 
U.S. corn prices is more sensitive to near-term cli-
mate change than to energy policy influences or to 
use of agricultural products for energy production, 
such as biofuel.19 

Agriculture is responsible for about 8% of U.S. heat-
trapping gas emissions,20 and there is tremendous 
potential for farming practices to reduce emissions 
or store more carbon in soil.21 Although large-scale 
agriculture in the Midwest historically led to de-
creased carbon in soils, higher crop residue inputs 
and adoption of different soil management tech-
niques have reversed this trend. Other techniques, 
such as planting cover crops and no-till soil manage-
ment, can further increase CO2 uptake and reduce 
energy use.22,23 Use of agricultural best manage-
ment practices can also improve water quality by 
reducing the loss of sediments and nutrients from 
farm fields. Methane released from animals and 
their wastes can be reduced by altered diets and 
methane capture systems, and nitrous oxide pro-
duction can be reduced by judicious fertilizer use24 
and improved waste handling.21 In addition, if bio-
fuel crops are grown sustainably,25 they offer emis-
sions reduction opportunities by substituting for 
fossil fuel-based energy (Ch. 10: Energy, Water, and 
Land). 

Figure 18.2. Projected increase in annual average temperatures (top left) 
by mid-century (2041-2070) as compared to the 1971-2000 period tell 
only part of the climate change story. Maps also show annual projected 
increases in the number of the hottest days (days over 95°F, top right), 
longer frost-free seasons (bottom left), and an increase in cooling degree 
days (bottom right), defined as the number of degrees that a day’s average 
temperature is above 65°F, which generally leads to an increase in energy 
use for air conditioning. Projections are from global climate models that 
assume emissions of heat-trapping gases continue to rise (A2 scenario). 
(Figure source: NOAA NCDC / CICS-NC). 

Projected Mid-Century Temperature Changes  
in the Midwest

Figure 18.3. Crop yields are very sensitive to temperature and rainfall. They are especially sensitive to high temperatures during the 
pollination and grain filling period. For example, corn (left) and soybean (right) harvests in Illinois and Indiana, two major producers, 
were lower in years with average maximum summer (June, July, and August) temperatures higher than the average from 1980 to 
2007. Most years with below-average yields are both warmer and drier than normal.26,27 There is high correlation between warm and 
dry conditions during Midwest summers28 due to similar meteorological conditions and drought-caused changes.29 (Figure source: 
Mishra and Cherkauer 201026).

Crop Yields Decline under Higher Temperatures
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Key Message 2: Forest Composition

The composition of the region’s forests is expected to change as rising temperatures drive 
habitats for many tree species northward. The role of the region’s forests as a net absorber 

of carbon is at risk from disruptions to forest ecosystems, in part due to climate change. 

The Midwest is characterized by a rich diversity of native spe-
cies juxtaposed on one of the world’s most productive agricul-
tural systems.30 The remnants of intact natural ecosystems in 
the region,31 including prairies, forests, streams, and wetlands, 
are rich with varied species.32 The combined effects of climate 
change, land-use change, and increasing numbers of invasive 
species are the primary threats to Midwest natural ecosys-
tems.33 Species most vulnerable to climate change include 
those that occur in isolated habitats; live near their physiologi-
cal tolerance limits; have specific habitat requirements, low 
reproductive rates, or limited dispersal capability; are depen-
dent on interactions with specific other species; and/or have 
low genetic variability.34

Among the varied ecosystems of the region, forest systems 
are particularly vulnerable to multiple stresses. The habitat 
ranges of many iconic tree species such as paper birch, quak-
ing aspen, balsam fir, and black spruce are projected to decline 
substantially across the northern Midwest as they shift north-
ward, while species that are common farther south, including 
several oaks and pines, expand their ranges northward into 
the region (Figure 18.4).35,36 There is considerable variability in 
the likelihood of a species’ habitat changing and the adaptabil-

ity of the species with regard to climate change.37 Migration 
to accommodate changed habitat is expected to be slow for 
many Midwest species, due to relatively flat topography, high 
latitudes, and fragmented habitats including the Great Lakes 
barrier. To reach areas that are 1.8°F cooler, species in moun-
tainous terrains need to shift 550 feet higher in altitude (which 
can be achieved in only a few miles), whereas species in flat 
terrain like the Midwest must move as much as 90 miles north 
to reach a similarly cooler habitat.38

Although global forests currently capture and store more car-
bon each year than they emit,39 the ability of forests to act as 
large, global carbon absorbers (“sinks”) may be reduced by 
projected increased disturbances from insect outbreaks,40 for-
est fire,41 and drought,42 leading to increases in tree mortal-
ity and carbon emissions. Some regions may even shift from 
being a carbon sink to being an atmospheric carbon dioxide 
source,43,44 though large uncertainties exist, such as whether 
projected disturbances to forests will be chronic or episodic.45 
Midwest forests are more resilient to forest carbon losses than 
most western forests because of relatively high moisture avail-
ability, greater nitrogen deposition (which tends to act as a 
fertilizer), and lower wildfire risk.43,46 

Forest Composition Shifts

Figure 18.4. As climate changes, species can often adapt by changing their ranges. Maps show current and projected future 
distribution of habitats for forest types in the Midwest under two emissions scenarios, a lower scenario that assumes reductions 
in heat-trapping gas emissions (B1), and a very high scenario that assumes continued increases in emissions (A1FI). Habitats for 
white/red/jack pine, maple/beech/birch, spruce/fir, and aspen/birch forests are projected to greatly decline from the northern forests, 
especially under higher emissions scenarios, while various oak forest types are projected to expand.37 While some forest types 
may not remain dominant, they will still be present in reduced quantities. Therefore, it is more appropriate to assess changes on an 
individual species basis, since all species within a forest type will not exhibit equal responses to climate change. (Figure source: 
Prasad et al. 200737). 
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Key Message 3: Public Health Risks

Increased heat wave intensity and frequency, increased humidity,  
degraded air quality, and reduced water quality will increase public health risks. 

The frequency of major heat waves in the Midwest has in-
creased over the last six decades.47 For the United States, mor-
tality increases 4% during heat waves compared with non-heat 
wave days.48 During July 2011, 132 million people across the 
U.S. were under a heat alert – and on July 20 of that year, the 
majority of the Midwest experienced temperatures in excess 
of 100°F. Heat stress is projected to increase as a result of both 
increased summer temperatures and humidity.49,50 One study 
projected an increase of between 166 and 2,217 excess deaths 
per year from heat wave-related mortality in Chicago alone by 
2081-2100.51 The lower number assumes a climate scenario 
with significant reductions in emissions of greenhouse gases 
(B1), while the upper number assumes a scenario under which 
emissions continue to increase (A2). These projections are sig-
nificant when compared to recent Chicago heat waves, where 
114 people died from the heat wave of 1999 and about 700 
died from the heat wave of 1995.52 Heat response plans and 
early warning systems save lives, and from 1975 to 2004, mor-

tality rates per heat event declined.53 However, many munici-
palities lack such plans.54

More than 20 million people in the Midwest experience air 
quality that fails to meet national ambient air quality stan-
dards.1 Degraded air quality due to human-induced emis-
sions55 and increased pollen season duration56 are projected 
to be amplified with higher temperatures,57 and pollution and 
pollen exposures, in addition to heat waves, can harm human 
health (Ch. 9: Human Health). Policy options exist (for example, 
see “Alternative Transportation Options Create Multiple Ben-
efits”) that could reduce emissions of both heat-trapping gases 
and other air pollutants, yielding benefits for human health 
and fitness. Increased temperatures and changes in precipita-
tion patterns could also increase the vulnerability of Midwest 
residents to diseases carried by insects and rodents (Ch. 9: Hu-
man Health).58

AlternAtive trAnsportAtion options creAte multiple benefits

Figure 18.5. Annual reduction in the number of premature deaths (left) and annual change in the number of cases with acute 
respiratory symptoms (right) due to reductions in particulate matter and ozone caused by reducing automobile exhaust. 
The maps project health benefits if automobile trips shorter than five miles (round-trip) were eliminated for the 11 largest 
metropolitan areas in the Midwest. Making 50% of these trips by bicycle just during four summer months would save 1,295 
lives and yield savings of more than $8 billion per year from improved air quality, avoided mortality, and reduced health care 
costs for the upper Midwest alone. (Figure source: Grabow et al. 2012; reproduced with permission from Environmental 
Health Perspectives59). 

The transportation sector produces one-third of U.S. greenhouse gas emissions, and automobile exhaust also contains 
precursors to fine particulate matter (PM2.5) and ground-level ozone (O3), which pose threats to public health. Adopting 
a low-carbon transportation system with fewer automobiles, therefore, could have immediate health “co-benefits” of 
both reducing climate change and improving human health via both improved air quality and physical fitness. 

Reducing Emissions, Improving Health
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Key Message 4: Fossil-Fuel Dependent Electricity System

The Midwest has a highly energy-intensive economy with per capita emissions of greenhouse 
gases more than 20% higher than the national average. The region also has a large and 

increasingly utilized potential to reduce emissions that cause climate change. 

The Midwest is a major exporter of electricity to other U.S. re-
gions and has a highly energy-intensive economy (Ch. 10: Ener-
gy, Water, and Land, Figure 10.4). Energy use per dollar of gross 
domestic product is approximately 20% above the national 
average, and per capita greenhouse gas emissions are 22% 
higher than the national average due, in part, to the reliance on 
fossil fuels, particularly coal for electricity generation.1 A large 
range in seasonal air temperature causes energy demand for 
both heating and cooling, with the highest demand for winter 
heating. The demand for heating in major midwestern cities is 
typically five to seven times that for cooling,1 although this is 
expected to shift as a result of longer summers, more frequent 
heat waves, and higher humidity, leading to an increase in the 
number of cooling degree days. This increased demand for 
cooling by the middle of this century is projected to exceed 10 
gigawatts (equivalent to at least five large conventional power 
plants), requiring more than $6 billion in infrastructure invest-
ments.60 Further, approximately 95% of the electrical generat-
ing infrastructure in the Midwest is susceptible to decreased 
efficiency due to higher temperatures.60

Climate change presents the Midwest’s energy sector with a 
number of challenges, in part because of its current reliance on 
coal-based electricity1  and an aging, less-reliable electric dis-
tribution grid61 that will require significant reinvestment even 
without additional adaptations to climate change.62 

Increased use of natural gas in the Midwest has the potential 
to reduce emissions of greenhouse gases. The Midwest also 
has potential to produce energy from zero- and low-carbon 
sources, given its wind, solar, and biomass resources, and 
potential for expanded nuclear power. The Midwest does not 
have the highest solar potential in the country (that is found 
in the Southwest), but its potential is nonetheless vast, with 
some parts of the Midwest having as good a solar resource as 
Florida.63 More than one-quarter of national installed wind en-
ergy capacity, one-third of biodiesel capacity, and more than 
two-thirds of ethanol production are located in the Midwest 
(see also Ch. 4: Energy and Ch. 10: Energy, Water, and Land).1 
Progress toward increasing renewable energy is hampered by 
electricity prices that are distorted through a mix of direct and 
indirect subsidies and unaccounted-for costs for conventional 
energy sources.64 

Key Message 5: Increased Rainfall and Flooding

Extreme rainfall events and flooding have increased during the last century, and these trends 
are expected to continue, causing erosion, declining water quality, and negative impacts  

on transportation, agriculture, human health, and infrastructure.

Precipitation in the Midwest is greatest in the east, declining 
towards the west. Precipitation occurs about once every seven 
days in the western part of the region and once every three 
days in the southeastern part.65 The 10 rainiest days can con-
tribute as much as 40% of total precipitation in a given year.65 
Generally, annual precipitation increased during the past 
century (by up to 20% in some locations), with much of the 
increase driven by intensification of the heaviest rainfalls.65,66 
This tendency towards more intense precipitation events is 
projected to continue in the future.67

Model projections for precipitation changes are less certain 
than those for temperature.3,4 Under a higher emissions sce-
nario (A2), global climate models (GCMs) project average win-
ter and spring precipitation by late this century (2071-2099) to 
increase 10% to 20% relative to 1971-2000, while changes in 
summer and fall are not expected to be larger than natural vari-
ations. Projected changes in annual precipitation show increas-
es larger than natural variations in the north and smaller in the 
south (Ch. 2: Our Changing Climate, Key Message 5).4 Regional 

climate models (RCMs) using the same emissions scenario also 
project increased spring precipitation (9% in 2041-2062 rela-
tive to 1979-2000) and decreased summer precipitation (by an 
average of about 8% in 2041-2062 relative to 1979-2000) par-
ticularly in the southern portions of the Midwest.3 Increases 
in the frequency and intensity of extreme precipitation are 
projected across the entire region in both GCM and RCM simu-
lations (Figure 18.6), and these increases are generally larger 
than the projected changes in average precipitation.3,4

Flooding can affect the integrity and diversity of aquatic eco-
systems. Flooding also causes major human and economic con-
sequences by inundating urban and agricultural land and by dis-
rupting navigation in the region’s roads, rivers, and reservoirs 
(see Ch. 5: Transportation, Ch. 9: Human Health, and Ch. 11: 
Urban). For example, the 2008 flooding in the Midwest caused 
24 deaths, $15 billion in losses via reduced agricultural yields, 
and closure of key transportation routes.1 Water infrastructure 
for flood control, navigation, and other purposes is susceptible 
to climate change impacts and other forces because the de-



18: MIDWEST

425 CLIMATE CHANGE IMPACTS IN THE UNITED STATES

signs are based upon historical patterns of precipitation and 
streamflow, which are no longer appropriate guides.

Snowfall varies across the region, comprising less than 10% of 
total precipitation in the south, to more than half in the north, 
with as much as two inches of water available in the snowpack 
at the beginning of spring melt in the northern reaches of the 
river basins.68 When this amount of snowmelt is combined 
with heavy rainfall, the resulting flooding can be widespread 
and catastrophic (see “Cedar Rapids: A Tale of Vulnerability 
and Response”).69 Historical observations indicate declines in 
the frequency of high magnitude snowfall years over much of 
the Midwest,70 but an increase in lake effect snowfall.71 These 
divergent trends and their inverse relationships with air tem-

peratures make overall projections of re-
gional impacts of the associated snowmelt 
extremely difficult. Large-scale flooding 
can also occur due to extreme precipitation 
in the absence of snowmelt (for example, 
Rush Creek and the Root River, Minnesota, 
in August 2007 and multiple rivers in south-
ern Minnesota in September 2010).72 These 
warm-season events are projected to in-
crease in magnitude. Such events tend to 
be more regional and less likely to cover as 
large an area as those that occur in spring, 
in part because soil water storage capacity 
is typically much greater during the sum-
mer. 

Changing land use and the expansion of 
urban areas are reducing water infiltra-
tion into the soil and increasing surface 
runoff. These changes exacerbate impacts 
caused by increased precipitation intensity. 
Many major Midwest cities are served by 
combined storm and sewage drainage sys-
tems. As surface area has been increasingly 
converted to impervious surfaces (such as 
asphalt) and extreme precipitation events 
have intensified, combined sewer overflow 
has degraded water quality, a phenomenon 
expected to continue to worsen with in-
creased urbanization and climate change.75 
The U.S. Environmental Protection Agency 
(EPA) estimates there are more than 800 
billion gallons of untreated combined sew-
age released into the nation’s waters annu-
ally.76 The Great Lakes, which provide drink-
ing water to more than 40 million people 
and are home to more than 500 beaches,75 
have been subject to recent sewage over-
flows. For example, stormwater across the 
city of Milwaukee recently showed high hu-
man fecal pathogen levels at all 45 outflow 

locations, indicating widespread sewage contamination.77 One 
study estimated that increased storm events will lead to an in-
crease of up to 120% in combined sewer overflows into Lake 
Michigan by 2100 under a very high emissions scenario (A1FI),75 
leading to additional human health issues and beach closures. 
Municipalities may be forced to invest in new infrastructure 
to protect human health and water quality in the Great Lakes, 
and local communities could face tourism losses from fouled 
nearshore regions.

Increased precipitation intensity also increases erosion, dam-
aging ecosystems and increasing delivery of sediment and sub-
sequent loss of reservoir storage capacity. Increased storm-
induced agricultural runoff and rising water temperatures 

When it Rains, it Pours

Figure 18.6. Precipitation patterns affect many aspects of life, from agriculture 
to urban storm drains. These maps show projected changes for the middle of the 
current century (2041-2070) relative to the end of the last century (1971-2000) 
across the Midwest under continued emissions (A2 scenario). Top left: the changes 
in total annual average precipitation. Across the entire Midwest, the total amount 
of water from rainfall and snowfall is projected to increase. Top right: increase in 
the number of days with very heavy precipitation (top 2% of all rainfalls each year). 
Bottom left: increases in the amount of rain falling in the wettest 5-day period over 
a year. Both (top right and bottom left) indicate that heavy precipitation events will 
increase in intensity in the future across the Midwest. Bottom right: change in the 
average maximum number of consecutive days each year with less than 0.01 inches 
of precipitation. An increase in this variable has been used to indicate an increase 
in the chance of drought in the future. (Figure source: NOAA NCDC / CICS-NC).
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have increased non-point source pollution problems in recent 
years.78 This has led to increased phosphorus and nitrogen 
loading, which in turn is contributing to more and prolonged 
occurrences of low-oxygen “dead zones” and to harmful, 
lengthy, and dense algae growth in the Great Lakes and other 
Midwest water bodies.79 (Such zones and their causes are also 
discussed in Ch. 25: Coasts, Ch. 15: Biogeochemical Cycles, and 
Ch. 3: Water, Key Message 6). Watershed planning can be used 
to reduce water quantity and quality problems due to changing 
climate and land use.

While there was no apparent change in drought duration in the 
Midwest region as a whole over the past century,80 the average 
number of days without precipitation is projected to increase 
in the future. This could lead to agricultural drought and sup-
pressed crop yields.9 This would also increase thermoelectric 
power plant cooling water temperatures and decrease cooling 
efficiency and plant capacity because of the need to avoid dis-
charging excessively warm water (see also Ch. 4: Energy, and 
Ch. 10: Energy, Water, and Land).60

Key Message 6: Increased Risks to the Great Lakes

Climate change will exacerbate a range of risks to the Great Lakes, including changes  
in the range and distribution of certain fish species, increased invasive species and  

harmful blooms of algae, and declining beach health. Ice cover declines  
will lengthen the commercial navigation season.

The Great Lakes, North America’s largest freshwater feature, 
have recently recorded higher water temperatures and less 
ice cover as a result of changes in regional climate  (see also 
Ch. 2: Our Changing Climate, Key Message 11). Summer sur-
face water temperatures in Lakes Huron increased 5.2°F and 
in Lake Ontario, 2.7°F, between 1968 and 2002,81 with smaller 
increases in Lake Erie.81,82 Due to the reduction in ice cover, 
the temperature of surface waters in Lake Superior during the 
summer increased 4.5°F, twice the rate of increase in air tem-
perature.83 These lake surface temperatures are projected to 
rise by as much as 7°F by 2050 and 12.1°F by 2100.84,85 Higher 
temperatures, increases in precipitation, and lengthened 
growing seasons favor production of blue-green and toxic al-
gae that can harm fish, water quality, habitats, and aesthet-
ics,79,84,86 and could heighten the impact of invasive species 
already present.87

In the Great Lakes, the average annual maximum ice coverage 
during 2003-2013 was less than 43% compared to the 1962-
2013 average of 52%,88 lower than any other decade during 
the period of measurements (Figure 18.7), although there is 
substantial variability from year to year. During the 1970s, 
which included several extremely cold winters, maximum ice 
coverage averaged 67%. Less ice, coupled with more frequent 
and intense storms (as indicated by some analyses of historical 
wind speeds),89 leaves shores vulnerable to erosion and flood-
ing and could harm property and fish habitat.84,90 Reduced ice 
cover also has the potential to lengthen the shipping season.91 
The navigation season increased by an average of eight days 
between 1994 and 2011, and the Welland Canal in the St. Law-
rence River remained open nearly two weeks longer. Increased 
shipping days benefit commerce but could also increase shore-
line scouring and bring in more invasive species.91,92

Cedar rapids: a tale of vulnerability and response

Cedar Rapids, Des Moines, Iowa City, and Ames, Iowa, have all suffered 
multi-million-dollar losses from floods since 1993. In June 2008, a record 
flood event exceeded the once-in-500-year flood level by more than 5 feet, 
causing $5 to $6 billion in damages from flooding, or more than $40,000 
per resident of the city of Cedar Rapids.73 The flood inundated much of the 
downtown, damaging more than 4,000 structures, including 80% of gov-
ernment offices, and displacing 25,000 people.74 The record flood at Cedar 
Rapids was the result of low reservoir capacity and extreme rainfall on soil 
already saturated from unusually wet conditions. Rainfall amounts com-
parable to those in 1993 (8 inches over two weeks) overwhelmed a flood 
control system designed largely for a once-in-100-year flood event. Such 
events are consistent with observations and projections of wetter springs 
and more intense precipitation events (see Figure 18.6). With the help of 
more than $3 billion in funding from the federal and state government, 
Cedar Rapids is recovering and has taken significant steps to reduce future 
flood damage, with buyouts of more than 1,000 properties, and numerous 
buildings adapted with flood protection measures. ©
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Changes in lake levels can also influence the amount of cargo 
that can be carried on ships. On average, a 1000-foot ship sinks 
into the water by one inch per 270 tons of cargo;93 thus if a ship 
is currently limited by water depth, any lowering of lake levels 
will result in a proportional reduction in the amount of cargo 
that it can transport to Great Lakes ports. However, current 
estimates of lake level changes are uncertain, even for con-
tinued increases in global greenhouse gas emissions (A2 sce-
nario). The most recent projections suggest a slight decrease or 
even a small rise in levels.94 Recent studies have also indicated 
that earlier approaches to computing evapotranspiration esti-
mates from temperature may have overestimated evaporation 
losses.94,95,96,97 The recent studies, along with the large spread 
in existing modeling results, indicate that projections of Great 
Lakes water levels represent evolving research and are still 
subject to considerable uncertainty (see Appendix 3: Climate 
Science Supplemental Message 8).

Figure 18.7. Bars show decade averages of annual maximum 
Great Lakes ice coverage from the winter of 1962-1963, when 
reliable coverage of the entire Great Lakes began, to the winter 
of 2012-2013. Bar labels indicate the end year of the winter; for 
example, 1963-1972 indicates the winter of 1962-1963 through 
the winter of 1971-1972. The most recent period includes the 
eleven years from 2003 to 2013. (Data updated from Bai and 
Wang, 201288).

Ice Cover in the Great Lakes
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18: MIDWEST

SUPPLEMENTAL MATERIAL
TRACEABLE ACCOUNTS

Process for Developing Key Messages: 
The assessment process for the Midwest Region began with a 
workshop was that was held July 25, 2011, in Ann Arbor, Michi-
gan. Ten participants discussed the scope and authors for a foun-
dational Technical Input Report (TIR) report entitled “Midwest 
Technical Input Report.”

98
 The report, which consisted of nearly 

240 pages of text organized into 13 chapters, was assembled by 
23 authors representing governmental agencies, non-governmen-
tal organizations (NGOs), tribes, and other entities. 

The Chapter Author Team engaged in multiple technical discus-
sions via teleconferences that permitted a careful review of the 
foundational TIR

98
 and of approximately 45 additional technical 

inputs provided by the public, as well as the other published lit-
erature, and professional judgment. The Chapter Author Team 
convened teleconferences and exchanged extensive emails to de-
fine the scope of the chapter for their expert deliberation of input 
materials and to generate the chapter text and figures. Each ex-
pert drafted key messages, initial text and figure drafts and trace-
able accounts that pertained to their individual fields of expertise. 
These materials were then extensively discussed by the team and 
were approved by the team members. 

Key message #1 Traceable accounT

In the next few decades, longer growing sea-
sons and rising carbon dioxide levels will increase 
yields of some crops, though those benefits will be 
progressively offset by extreme weather events. 
Though adaptation options can reduce some of the 
detrimental effects, in the long term, the combined 
stresses associated with climate change are ex-
pected to decrease agricultural productivity. 

Description of evidence base
The key message and supporting text summarize extensive evi-
dence documented in the Technical Input Report.

98
 Technical 

input reports on a wide range of topics were also received and 
reviewed as part of the Federal Register Notice solicitation for 
public input. 

Evidence for altered growing seasons across the U.S. are dis-
cussed in Chapter 2 (Our Changing Climate, Key Message 4) and 
its Traceable Accounts. “Climate Trends and Scenarios for the 
U.S. National Climate Assessment”

4
 and its references provide 

specific details for the Midwest. Evidence for longer growing sea-
sons in the Midwest is based on regional temperature records and 
is incontrovertible, as is evidence for increasing carbon dioxide 
concentrations.

U.S. Department of Agriculture data tables provide evidence for 
the importance of the eight Midwest states for U.S. agricultural 
production.

8
 Evidence for the effect of future elevated carbon diox-

ide concentrations on crop yields is based on scores of greenhouse 
and field experiments that show a strong fertilization response 
for C3 plants such as soybeans and wheat and a positive but not 
as strong a response for C4 plants such as corn. Observational 
data, evidence from field experiments, and quantitative modeling 
are the evidence base of the negative effects of extreme weather 
events on crop yield: early spring heat waves followed by normal 
frost events have been shown to decimate Midwest fruit crops; 
heat waves during flowering, pollination, and grain filling have 
been shown to significantly reduce corn and wheat yields; more 
variable and intense spring rainfall has delayed spring planting in 
some years and can be expected to increase erosion and runoff; 
and floods have led to crop losses.

12,13,14

New information and remaining uncertainties
Key issues (uncertainties) are: a) the rate at which grain yield im-
provements will continue to occur, which could help to offset the 
overall negative effect of extreme events at least for grain crops 
(though not for individual farmers); and b) the degree to which 
genetic improvements could make some future crops more toler-
ant of extreme events such as drought and heat stress. Additional 
uncertainties are: c) the degree to which accelerated soil carbon 
loss will occur as a result of warmer winters and the resulting ef-
fects on soil fertility and soil water availability; and d) the potential 
for increased pest and disease pressure as southern pests such 
as soybean rust move northward and existing pests better survive 
milder Midwest winters.
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Assessment of confidence based on evidence
Because nearly all studies published to date in the peer-reviewed 
literature agree that Midwest crops benefit from CO2 fertilization 
and some benefit from a longer growing season, there is very high 
confidence in this component of the key message. 

Studies also agree that full benefits of climate change will be off-
set partly or fully by more frequent heat waves, early spring thaws 
followed by freezing temperatures, more variable and intense rain-
fall events, and floods. Again, there is very high confidence in this 
aspect. 

There is less certainty (high) about pest effects and about the 
potential for adaptation actions to significantly mitigate the risk 
of crop loss. 

Key Message #2 Traceable Account
The composition of the region’s forests is expect-

ed to change as rising temperatures drive habitats 
for many tree species northward. The role of the 
region’s forests as a net absorber of carbon is at 
risk from disruptions to forest ecosystems, in part 
due to climate change.

Description of evidence
The key message and supporting text summarize extensive evi-
dence documented in the Technical Input Report.

98
 Technical 

inputs on a wide range of topics were also received and reviewed 
as part of the Federal Register Notice solicitation for public input. 

Evidence for increased temperatures and altered growing seasons 
across the U.S. is discussed in Chapter 2 (Our Changing Climate, 
Key Messages 3 and 4) and its Traceable Accounts. “Climate 
Trends and Scenarios for the U.S. National Climate Assessment,”

4
 

with its references, provides specific details for the Midwest. Evi-
dence that species have been shifting northward or ascending in 
altitude has been mounting for numerous species, though less 
so for long-lived trees. Nearly all studies to date published in the 
peer-reviewed literature agree that many of the boreal species of 
the north will eventually retreat northward. The question is when. 
Multiple models and paleoecological evidence show these trends 
have occurred in the past and are projected to continue in the 
future.

36
 

The forests of the eastern United States (including the Midwest) 
have been accumulating large quantities of carbon over the past 
century,

23
 but evidence shows this trend is slowing in recent de-

cades. There is a large amount of forest inventory data supporting 
the gradual decline in carbon accumulation throughout the east-
ern United States,

99
 as well as evidence of increasing disturbances 

and disturbance agents that are reducing overall net productivity 
in many of the forests.

New information and remaining uncertainties
A key issue (uncertainty) is the rate of change of habitats and for 
organisms adapting or moving as habitats move. The key ques-
tions are: How much will the habitats change (what scenarios 
and model predictions will be most correct)? As primary habitats 
move north, which species will be able to keep up with changing 
habitats on their own or with human intervention through assisted 
migration, management of migration corridors, or construction or 
maintenance of protected habitats within species’ current land-
scapes? 

Viable avenues to improving the information base are determining 
which climate models exhibit the best ability to reproduce the 
historical and potential future change in habitats, and determining 
how, how fast, and how far various species can move or adapt. 

An additional key source of uncertainty is whether projected dis-
turbances to forests are chronic or episodic in nature.

45

Assessment of confidence based on evidence
There is very high confidence in this key message, given the evi-
dence base and remaining uncertainties.

Confidence Level
Very High

Strong evidence (established 
theory, multiple sources, con-

sistent results, well documented 
and accepted methods, etc.), 

high consensus

High
Moderate evidence (several 
sources, some consistency, 

methods vary and/or documen-
tation limited, etc.), medium 

consensus

Medium
Suggestive evidence (a few 
sources, limited consistency, 
models incomplete, methods 
emerging, etc.), competing 

schools of thought

Low
Inconclusive evidence (lim-
ited sources, extrapolations, 

inconsistent findings, poor docu-
mentation and/or methods not 
tested, etc.), disagreement or 

lack of opinions among experts
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Key message #3 Traceable accounT

Increased heat wave intensity and frequency, in-
creased humidity, degraded air quality, and reduced 
water quality will increase public health risks.

Description of evidence
The key message and supporting text summarize extensive evi-
dence documented in the Technical Input Report.

98
 Technical 

inputs on a wide range of topics were also received and reviewed 
as part of the Federal Register Notice solicitation for public input. 

Evidence for extreme weather such as heat waves across the U.S. 
are discussed in Chapter 2 (Our Changing Climate, Key Message 
7) and its Traceable Accounts. Specific details for the Midwest are 
in “Climate Trends and Scenarios for the U.S. National Climate 
Assessment”

4
 with its references. A recent book

100
 also contains 

chapters detailing the most current evidence for the region. 

Heat waves: The occurrence of heat waves in the recent past has 
been well-documented,

1,15,49
 as have health outcomes (particularly 

with regards to mortality). Projections of thermal regimes indicate 
increased frequency of periods with high air temperatures (and 
high apparent temperatures, which are a function of both air tem-
perature and humidity). These projections are relatively robust and 
consistent between studies. 

Humidity: Evidence on observed and projected increased humidity 
can be found in a recent study.

49
 

Air quality: In 2008, in the region containing North Dakota, South 
Dakota, Nebraska, Kansas, Minnesota, Iowa, Missouri, Wisconsin, 
Illinois, Michigan, Indiana, and Ohio, over 26 million people lived 
in counties that failed the National Ambient Air Quality Standards 
(NAAQS) for PM2.5 (particles with diameter below 2.5 microns), 
and over 24 million lived in counties that failed the NAAQS for 
ozone (O3).

1
 Because not all counties have air quality measure-

ment stations in place, these data must be considered a lower 
bound on the actual number of counties that violate the NAAQS. 
Given that the NAAQS were designed principally with the goal of 
protecting human health, failure to meet these standards implies a 
significant fraction of the population live in counties characterized 
by air quality that is harmful to human health. While only relatively 
few studies have sought to make detailed air quality projections for 
the future, those that have

1
 generally indicate declining air quality 

(see uncertainties below). 

Water quality: The EPA estimates there are more than 800 bil-
lion gallons of untreated combined sewage released into the na-
tion’s waters annually.

76
 Combined sewers are designed to capture 

both sanitary sewage and stormwater. Combined sewer overflows 
lead to discharge of untreated sewage as a result of precipita-
tion events, and can threaten human health. While not all urban 
areas within the Midwest have combined sewers for delivery to 

wastewater treatment plants, many do (for example, Chicago and 
Milwaukee), and such systems are vulnerable to combined sewer 
overflows during extreme precipitation events. Given projected 
increases in the frequency and intensity of extreme precipitation 
events in the Midwest (Chapter 2: Our Changing Climate, Key Mes-
sage 6),

75
 it appears that sewer overflow will continue to constitute 

a significant current health threat and a critical source of climate 
change vulnerability for major urban areas within the Midwest. 

New information and remaining uncertainties
Key issues (uncertainties) are: Human health outcomes are con-
tingent on a large number of non-climate variables. For example, 
morbidity and mortality outcomes of extreme heat are strongly 
determined by a) housing stock and access to air-conditioning in 
residences; b) existence and efficacy of heat wave warning and 
response plans (for example, foreign-language-appropriate com-
munications and transit plans to public cooling centers, especially 
for the elderly); and c) co-stressors (for example, air pollution). 
Further, heat stress is dictated by apparent temperature, which 
is a function of both air temperature and humidity. Urban heat 
islands tend to exacerbate elevated temperatures and are largely 
determined by urban land use and human-caused heat emissions. 
Urban heat island reduction plans (for example, planted green 
roofs) represent one ongoing intervention. Nevertheless, the oc-
currence of extreme heat indices will increase under all climate 
scenarios. Thus, in the absence of policies to reduce heat-related 
illness/death, these impacts will increase in the future.

Air quality is a complex function not only of physical meteorology 
but emissions of air pollutants and precursor species. However, 
since most chemical reactions are enhanced by warmer tempera-
tures, as are many air pollutant emissions, warmer temperatures 
may lead to worsening of air quality, particularly with respect to 
tropospheric ozone (see Ch. 9: Human Health). Changes in humid-
ity are more difficult to project but may amplify the increase in 
heat stress due to rising temperatures alone.

49

Combined sewer overflow is a major threat to water quality in some 
midwestern cities now. The tendency towards increased magni-
tude of extreme rain events (documented in the historical record 
and projected to continue in downscaling analyses) will cause an 
increased risk of waterborne disease outbreaks in the absence of 
infrastructure overhaul. However, mitigation actions are available, 
and the changing structure of cities (for example, reducing imper-
vious surfaces) may offset the impact of the changing climate.

Assessment of confidence based on evidence
In the absence of concerted efforts to reduce the threats posed 
by heat waves, increased humidity, degraded air quality and de-
graded water quality, climate change will increase the health risks 
associated with these phenomena. However, these projections are 
contingent on underlying assumptions regarding socioeconomic 
conditions and demographic trends in the region. Confidence is 
therefore high regarding this key message. 
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Key message #4 Traceable accounT

The Midwest has a highly energy-intensive econo-
my with per capita emissions of greenhouse gases 
more than 20% higher than the national average. 
The region also has a large and increasingly utilized 
potential to reduce emissions that cause climate 
change. 

Description of evidence
The key message and supporting text summarize extensive evi-
dence documented in the Technical Input Report.

98
 Technical 

inputs on a wide range of topics were also received and reviewed 
as part of the Federal Register Notice solicitation for public input. 

The Midwest’s disproportionately large reliance on coal for elec-
tricity generation and the energy intensity of its agricultural and 
manufacturing sectors are all well documented in both govern-
ment and industry records, as is the Midwest’s contribution to 
greenhouse gases.

1
 The region’s potential for zero- and lower-

carbon energy production is also well documented by government 
and private assessments. Official and regular reporting by state 
agencies and non-governmental organizations demonstrates the 
Midwest’s progress toward a decarbonized energy mix (Ch. 4: En-
ergy; Ch. 10: Energy, Water, and Land).

1

There is evidence that the Midwest is steadily decarbonizing its 
electricity generation through a combination of new state-level 
policies (for example, energy efficiency and renewable energy 
standards) and will continue to do so in response to low natural 
gas prices, falling prices for renewable electricity (for example, 
wind and solar), greater market demand for lower-carbon energy 
from consumers, and new EPA regulations governing new power 
plants. Several midwestern states have established Renewable 
Portfolio Standards (see https://www.misoenergy.org/WhatWeDo/
StrategicInitiatives/Pages/RenewablePortfolioStandards.aspx).

New information and remaining uncertainties
There are four key uncertainties. The first uncertainty is the net 
effect of emerging EPA regulations on the future energy mix of the 
Midwest. Assessments to date suggest a significant number of 
coal plants will be closed or repowered with lower-carbon natural 
gas; and even coal plants that are currently thought of as “must 
run” (to maintain the electric grid’s reliability) may be able to 
be replaced in some circumstances with the right combination 
of energy efficiency, new transmission lines, demand response, 
and distributed generation. A second key uncertainty is whether 
or not natural gas prices will remain at their historically low levels. 
Given that there are really only five options for meeting electricity 
demand – energy efficiency, renewables, coal, nuclear, and natu-
ral gas – the replacement of coal with natural gas for electricity 
production would have a significant impact on greenhouse gas 
emissions in the region. Third is the uncertain future for federal 
policies that have spurred renewable energy development to date, 

such as the Production Tax Credit for wind. While prices for both 
wind and solar continue to fall, the potential loss of tax credits 
may dampen additional market penetration of these technologies. 
A fourth uncertainty is the net effect of climate change on energy 
demand, and the cost of meeting that new demand profile. Re-
search to date suggests the potential for a significant swing from 
the historically larger demand for heating in the winter to more 
demand in the summer instead, due to a warmer, more humid 
climate.

3
 

Assessment of confidence based on evidence
There is no dispute about the energy intensity of the midwestern 
economy, nor its disproportionately large contribution of green-
house gas emissions. Similarly, there is broad agreement about 
the Midwest’s potential for—and progress toward—lower-carbon 
electricity production. There is therefore very high confidence in 
this statement. 

Key message #5 Traceable accounT

Extreme rainfall events and flooding have in-
creased during the last century, and these trends 
are expected to continue, causing erosion, declining 
water quality, and negative impacts on transporta-
tion, agriculture, human health, and infrastructure.

Description of evidence
The key message and supporting text summarize extensive evi-
dence documented in the Technical Input Report.

98
 Technical 

inputs on a wide range of topics were also received and reviewed 
as part of the Federal Register Notice solicitation for public input. 

Evidence for extreme weather and increased precipitation across 
the U.S. are discussed in Chapter 2 (Our Changing Climate, Key 
Messages 5, 6, and 7) and its Traceable Accounts. Specific de-
tails for the Midwest are detailed in “Climate Trends and Scenarios 
for the U.S. National Climate Assessment”

4
 with its references. A 

recent book
100

 also contains chapters detailing the most current 
evidence for the region. 

There is compelling evidence that annual total precipitation has 
been increasing in the region, with wetter winters and springs, 
drier summers, an increase in extreme precipitation events, and 
changes in snowfall patterns. These observations are consistent 
with climate model projections. Both the observed trends and cli-
mate models suggest these trends will increase in the future. 

Recent records also indicate evidence of a number of high-impact 
flood events in the region. Heavy precipitation events cause in-
creased kinetic energy of surface water and thus increase erosion. 
Heavy precipitation events in the historical records have been 
shown to be associated with discharge of partially or completely 
untreated sewage due to the volumes of water overwhelming com-
bined sewer systems that are designed to capture both domestic 
sewage and stormwater.

https://www.misoenergy.org/WhatWeDo/StrategicInitiatives/Pages/RenewablePortfolioStandards.aspx
https://www.misoenergy.org/WhatWeDo/StrategicInitiatives/Pages/RenewablePortfolioStandards.aspx
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Climate downscaling projections tend to indicate an increase in 
the frequency and duration of extreme events (both heavy precipi-
tation and meteorological drought) in the future.

An extensive literature survey and synthetic analysis is presented 
in chapters in a recent book

100
 for impacts on water quality, trans-

portation, agriculture, health, and infrastructure.

New information and remaining uncertainties
Precipitation is much less readily measured or modeled than air 
temperature.

3
 Thus both historical tendencies and projections 

for precipitation are inherently less certain than for temperature. 
Most regional climate models still have a positive bias in precipita-
tion frequency but a negative bias in terms of precipitation amount 
in extreme events.

Flood records are very heterogeneous and there is some ambiguity 
about the degree to which flooding is a result of atmospheric con-
ditions.

69
 Flooding is not solely the result of incident precipitation 

but is also a complex function of the preceding conditions such 
as soil moisture content and extent of landscape infiltration. A key 
issue (uncertainty) is the future distribution of snowfall. Records 
indicate that snowfall is decreasing in the southern parts of the 
region, along with increasing lake effect snow. Climate models 
predict these trends will increase. There is insufficient knowledge 
about how this change in snowfall patterns will affect flooding and 
associated problems, but it is projected to affect the very large 
spring floods that typically cause the worst flooding in the region. 
In addition, recent data and climate predictions indicate drier 
summer conditions, which could tend to offset the effects of high-
er intensity summer storms by providing increased water storage 
in the soils. The relative effects of these offsetting trends need to 
be assessed. To determine future flooding risks, hydrologic model-
ing is needed that includes the effects of the increase in extreme 
events, changing snow patterns, and shifts in rainfall patterns. 
Adaptation measures to reduce soil erosion and combined sewer 
overflow (CSO) events are available and could be widely adopted.

The impacts of increased magnitude of heavy precipitation events 
on water quality, agriculture, human health, transportation, and 
infrastructure will be strongly determined by the degree to which 
the resilience of such systems is enhanced (for example, some 
cities are already implementing enhanced water removal systems).

Assessment of confidence based on evidence
There have been improvements in agreement between observed 
precipitation patterns and model simulations. Also an increase in 
extreme precipitation events is consistent with first-order reason-
ing and increased atmospheric water burdens due to increased air 
temperature. Recent data suggest an increase in flooding in the 
region but there is uncertainty about how changing snow patterns 
will affect flood events in the future. Thus there is high confidence 
in increases in high-magnitude rainfall events and extreme pre-
cipitation events, and that these trends are expected to continue. 

There is medium confidence that, in the absence of substantial 
adaptation actions, the enhancement in extreme precipitation and 
other tendencies in land use and land cover result in a projected 
increase in flooding. There is medium confidence that, in the ab-
sence of major adaptation actions, the enhancement in extreme 
precipitation will tend to increase the risk of erosion, declines in 
water quality, and negative impacts on transportation, agriculture, 
human health, and infrastructure.

3

Key message #6 Traceable accounT

Climate change will exacerbate a range of risks 
to the Great Lakes, including changes in the range 
and distribution of certain fish species, increased 
invasive species and harmful blooms of algae, 
and declining beach health. Ice cover declines will 
lengthen the commercial navigation season.

Description of evidence
The key message and supporting text summarize extensive evi-
dence documented in the Technical Input Report.

98
 Technical 

inputs on a wide range of topics were also received and reviewed 
as part of the Federal Register Notice solicitation for public input. 

Evidence for changes in ice cover due to increased temperatures 
across the U.S. are discussed in Chapter 2 (Our Changing Climate, 
Key Message 11) and its Traceable Accounts. Specific details for 
the Midwest are detailed in “Climate Trends and Scenarios for the 
U.S. National Climate Assessment”

4
 with its references. A recent 

book
100

 also contains chapters detailing the most current evidence 
for the region. 

Altered fish communities: Warmer lakes and streams will certainly 
provide more habitat for warmwater species as conditions in north-
ern reaches of the basin become more suitable for warmwater fish 
and as lakes and streams are vacated by cool- and coldwater spe-
cies.

84
 Habitat for coldwater fish, though not expected to disap-

pear, will shrink substantially, though it could also expand in some 
areas, such as Lake Superior. Whether climate change expands 
the range of any type of fish is dependent on the availability of 
forage fish, as higher temperatures also necessitate greater food 
intake.

Increased abundances of invasive species: As climate change al-
ters water temperatures, habitat, and fish communities, condi-
tions that once were barriers to alien species become conduits for 
establishment and spread.

84
 This migration will alter drastically 

the fish communities of the Great Lakes basin. Climate change is 
also projected to heighten the impact of invasive species already 
present in the Great Lakes basin. Warmer winter conditions, for 
instance, have the potential to benefit alewife, round gobies, ruffe, 
sea lamprey, rainbow smelt, and other non-native species. These 
species have spread rapidly throughout the basin and have already 
inflicted significant ecological and economic harm.  
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Declining beach health and harmful algal blooms: Extreme events 
increase runoff, adding sediments, pollutants, and nutrients to 
the Great Lakes. The Midwest has experienced rising trends in 
precipitation and runoff. Agricultural runoff, in combination with 
increased water temperatures, has caused considerable non-point 
source pollution problems in recent years, with increased phos-
phorus and nitrogen loadings from farms contributing to more 
frequent and prolonged occurrences of anoxic “dead zones” and 
harmful, dense algae growth for long periods. Stormwater runoff 
that overloads urban sewer systems during extreme events adds 
to increased levels of toxic substances, sewage, and bacteria in 
the Great Lakes, affecting water quality, beach health, and human 
well-being. Increased storm events caused by climate change will 
lead to an increase in combined sewer overflows.

84
 

Decreased ice cover: Increasingly mild winters have shortened the 
time between when a lake freezes and when it thaws.

101
 Scientists 

have documented a relatively constant decrease in Great Lakes ice 
cover since the 1970s, particularly for Lakes Superior, Michigan, 
Huron, and Ontario. The loss of ice cover on the Great Lakes has 
both ecological and economic implications. Ice serves to protect 
shorelines and habitat from storms and wave power. Less ice—
coupled with more frequent and intense storms—leaves shores 
vulnerable to erosion and flooding and could harm property and 
fish habitat.

Water levels: The 2009 NCA
102

 included predictions of a signifi-
cant drop in Great Lakes levels by the end of the century, based 
on methods of linking climate models to hydrologic models. These 
methods have been significantly improved by fully coupling the 
hydrologic cycle among land, lake, and atmosphere.

97
 Without ac-

counting for that cycle of interactions, a study
96

 concluded that 
increases in precipitation would be negated by increases in win-
ter evaporation from less ice cover and by increases in summer 
evaporation and evapotranspiration from warmer air temperatures, 
under a scenario of continued increases in global emissions (SRES 
A2 scenario). Declines of 8 inches to 2 feet have been projected 
by the end of this century, depending on the specific lake in ques-
tion.
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 A recent comprehensive assessment,

94
 however, has con-

cluded that with a continuation of current rising emissions trends 
(A2), the lakes will experience a slight decrease or even a rise in 
water levels; the difference from earlier studies is because earlier 
studies tended to overstress the amount of evapotranspiration ex-
pected to occur. The range of potential future lake levels remains 
large and includes the earlier projected decline. Overall, however, 
scientists project an increase in precipitation in the Great Lakes 
region (with extreme events projected to contribute to this in-
crease), which will contribute to maintenance of or an increase 
in Great Lakes water levels. However, water level changes are not 
predicted to be uniform throughout the basin.

Shipping: Ice cover is expected to decrease dramatically by the 
end of the century, possibly lengthening the shipping season and, 
thus, facilitating more shipping activity. Current science suggests 

water levels in the Great Lakes are projected to fall slightly or 
might even rise over the short run. However, by causing even a 
small drop in water levels, climate change could make the costs 
of shipping increase substantially. For instance, for every inch of 
draft a 1000-foot ship gives up, its capacity is reduced by 270 
tons.
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 Lightened loads today already add about $200,000 in 

costs to each voyage. 

New information and remaining uncertainties
Key issues (uncertainties) are: Water levels are influenced by the 
amount of evaporation from decreased ice cover and warmer air 
temperatures, by evapotranspiration from warmer air tempera-
tures, and by potential increases in inflow from more precipitation. 
Uncertainties about Great Lakes water levels are high, though 
most models suggest that the decrease in ice cover will lead to 
slightly lower water levels, beyond natural fluctuations.

The spread of invasive species into the system is near-certain (giv-
en the rate of introductions over the previous 50 years) without ma-
jor policy and regulatory changes. However, the changes in Great 
Lakes fish communities are based on extrapolation from known 
fishery responses to projected responses to expected changing 
conditions in the basin. Moreover, many variables beyond water 
temperature and condition affect fisheries, not the least of which 
is the availability of forage fish. Higher water temperatures neces-
sitate greater food intake, yet the forage base is changing rapidly 
in many parts of the Great Lakes basin, thus making the projected 
impact of climate change on fisheries difficult to discern with very 
high certainty. 

Assessment of confidence based on evidence
Peer-reviewed literature about the effects of climate change are in 
broad agreement that air and surface water temperatures are ris-
ing and will continue to do so, that ice cover is declining steadily, 
and that precipitation and extreme events are on the rise. For 
large lake ecosystems, these changes have well-documented ef-
fects, such as effects on algal production, stratification (change 
in water temperature with depth), beach health, and fisheries. Key 
uncertainties exist about Great Lakes water levels and the impact 
of climate change on fisheries. 

A qualitative summary of climate stressors and coastal margin 
vulnerabilities for the Great Lakes is given in a technical input 
report.
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 We have high confidence that the sum of these stressors 

will exceed the risk posed by any individual stressor. However, 
quantifying the cumulative impacts of those stressors is very chal-
lenging. 

Given the evidence and remaining uncertainties, there is very high 
confidence in this key message, except high confidence for lake 
levels changing, and high confidence that declines in ice cover will 
continue to lengthen the commercial navigation season. There is 
limited information regarding exactly how invasive species may 
respond to changes in the regional climate, resulting in medium 
confidence for that part of the key message.


