Midwest Cogeneration Association Testimony to the 2015 Indiana Interim Study Committee on Energy, Utilities, and Telecommunications

Lawrence McCormack

State Government Relations Manager Cummins

Chris Cummings

Business Development, Alternative Energy MacAllister Power Systems

Midwest Cogeneration Association

- The MCA is a not-for-profit professional association dedicated to promoting clean and energy efficient cogeneration technologies in eight Midwest states, including Indiana.
- MCA members include representatives of CHP and WHP technology manufacturers, distributors, and project developers – many of whom have manufacturing facilities and business operations in Indiana.
- Our members have expertise in CHP and WHP technologies, as well as project financing and development.

Cummins Inc.

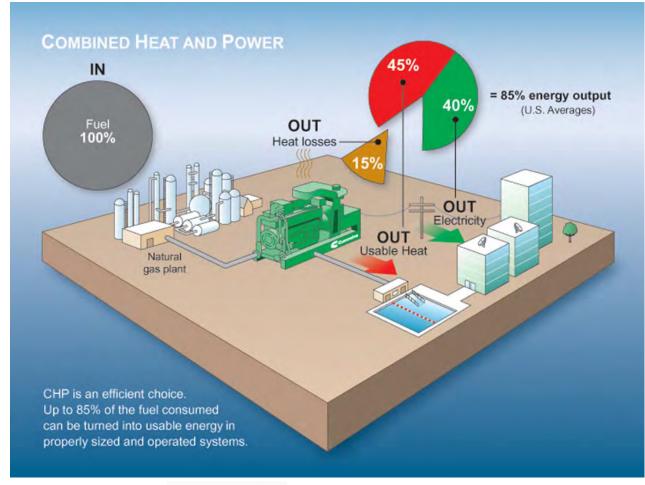
- Founded in 1919 in Columbus, IN.
- Largest independent maker of diesel engines and related products in the world.
- Ranked 168 on the Fortune 500.
- Employ more than 9,000 in Indiana.
- Manufacturing facilities in Columbus and Seymour.

Combined Heat and Power (CHP)

- CHP The utilization of both heat and electric energy from a generator
- Also known as Co-generation or Co-Gen
- CHP currently supplies 12% of U.S. generating capacity
- CHP systems can reach efficiencies above 80%
- States/utilities have different requirements for cogeneration
- CHP is not a new technology
 - Used in 1882 in Thomas Edison's first electric generating plant (Pearl Street NY)
 - Early 1900s regulation promoting the electrification of rural America discouraged decentralized power and made it illegal for non-utilities to sell power
 - 1978 Realizing efficiency in centrally-fired plants had stagnated, PURPA (Public Utilities Regulatory Practices Act) was passed

What is CHP?

- Combined heat and power technologies produce both electricity and steam from a single fuel at a facility located near the consumer.
- These efficient systems recover heat that normally would be wasted in an electricity generator, and save the fuel that would otherwise be used to produce heat or steam in a separate unit.
- CHP's inherent higher efficiency and the avoidance of losses in transmitting the electricity to the end-user from the central station generator result in reduced primary energy use and lower greenhouse gas (GHG) emissions.
- The most common CHP configuration is known as a topping cycle, where fuel is first used in a heat engine to generate power, and the waste heat from the power generation equipment is then recovered to provide useful thermal energy.
- A gas turbine or reciprocating engine generates electricity by burning fuel and then uses a heat recovery unit to capture useful thermal energy from the prime mover's exhaust stream and cooling systems.


Traditional Centrally-Fired Generation

Combined Heat and Power (CHP) Generation

MACALLISTER

POINER SYSTEMS

FA

Cummins CHP Products

Indiana CHP & WHP Current and Potential

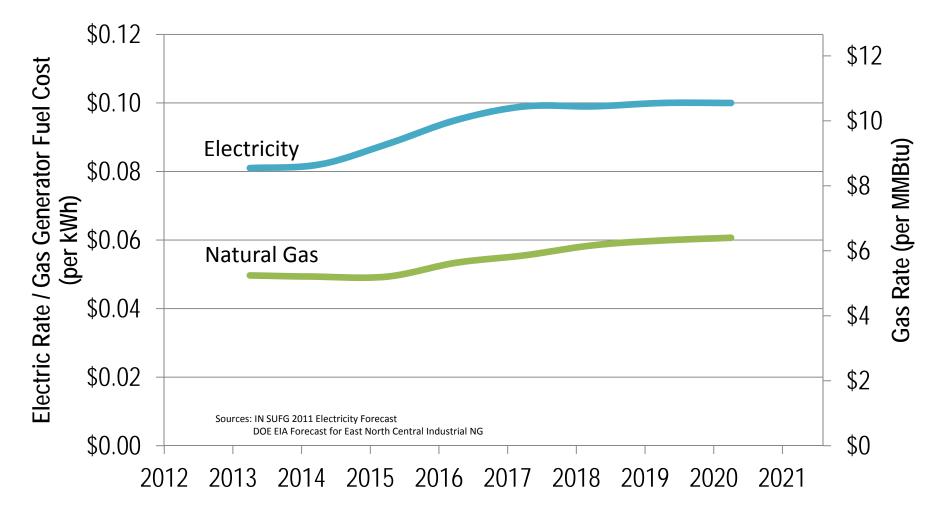
- 42 CHP and WHP projects in Indiana
 - 2,323 megawatts
 - Source: DOE CHP Installation Dababase
- Many premier CHP/WHP projects

Range from 130 kW to 755 MW

- 3,500-5,700 additional megawatts of unrealized potential CHP/WHP projects in Indiana's commercial, institutional, industrial, and agricultural sectors
 - Source: ICF International Estimates and Oak Ridge National Laboratory

CHP VALUE PROPOSITION: STATE OF INDIANA

- Additional generation to meet future demand without high cost of new power plants
 - Using private capital
- Demand reductions resulting in lower costs to Indiana consumers
 - Greater efficiency of CHP/WHP systems
 - Reduction in "line losses" (7%+)
- Job creation and increases in Indiana's manufacturing competitiveness
- Increased energy resiliency during natural disasters and other emergencies
- Reduction in emissions
 - Reduced greenhouse gases, criteria pollutants, and hazardous air pollutants



Indiana Spark Spread Forecast

September 2, 2015

12

Electricity

Hot Water / Steam

2 MW CHP System Hourly Economic Profile	
Natural Gas	\$ (67.84)
Service	\$ (38.90)
Electricity	\$ 153.21
Heat	\$ 32.27
Net Savings	\$ 78.84

Annual Savings \$676,752

How Can Indiana Promote CHP?

MCA supports the following CHP Coalition proposals for legislation that will level the playing field for private investment in CHP:

- A directive to the IURC to update regulations and tariffs for back up and maintenance rates
- Recognition that utilities and non-utilities can own and provide technical, financing, or operational expertise for private energy projects
- Provision of a pilot regulatory mechanism for streamlining approval of CHP projects

