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Abstract
The diffusion of new technologies is often mediated by spatial and socioeconomic
factors. This article empirically examines the diffusion of an important renewable
energy technology: residential solar photovoltaic (PV) systems. Using detailed data on
PV installations in Connecticut, we identify the spatial patterns of diffusion, which
indicate considerable clustering of adoptions. This clustering does not simply follow the
spatial distribution of income or population. We find that smaller centers contribute to
adoption more than larger urban areas, in a wave-like centrifugal pattern. Our empirical
estimation demonstrates a strong relationship between adoption and the number of
nearby previously installed systems as well as built environment and policy variables.
The effect of nearby systems diminishes with distance and time, suggesting a spatial
neighbor effect conveyed through social interaction and visibility. These results
disentangle the process of diffusion of PV systems and provide guidance to
stakeholders in the solar market.
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1. Introduction

Economists and geographers have long been interested in the factors governing the
patterns of diffusion of new technologies. Since the work of Hägerstrand (1952) and
Rogers (1962), many authors have explored the characteristics of technology diffusion
and the role of policies, economic factors and social interactions in influencing the
waves of diffusion seen for many new products (Bass, 1969; Brown, 1981; Webber,
2006). Understanding the patterns of diffusion—and particularly spatial patterns—is
important not only from a scholarly perspective, but also from a policy and marketing
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perspective. This is especially true when examining the diffusion of technologies
with both private and public good characteristics, such as renewable energy
technologies.

This article examines the spatial pattern of adoption of an increasingly important
renewable energy technology: residential rooftop solar photovoltaic systems (hence-
forth ‘PV systems’). Our study area is the state of Connecticut (CT), which has actively
used state policy to promote PV system adoption. We explore the patterns of diffusion
using geostatistical approaches, finding that diffusion of PV systems in CT tends to
emanate from smaller and midsized population centers in a wave-like centrifugal
pattern. To explain the factors underlying these patterns of adoption, we perform a
panel data analysis of the effects of nearby previous adoptions, built environment and
demographic, socioeconomic and political affiliation variables on PV system adoptions.
We develop a novel set of spatiotemporal variables that both capture recent nearby
adoptions and retain the ability to control for unobserved heterogeneity at the Census
block group level. We find clear evidence of spatial neighbor effects (often known
as ‘peer effects’) from recent nearby adoptions that diminish over time and space.
For example, our results indicate that adding one more installation within 0.5 miles
of adopting households in the year prior to the adoption increases the number of
installations in a block group by 0.44 PV systems on average. We also develop a new
panel dataset of demographics and built environment variables that allows for a
detailed examination of other contextual factors of adoption. Our results indicate that
built environment variables, such as housing density and the share of renter-occupied
dwellings, are even more important factors influencing adoption than household
income or political affiliation in CT.

Several recent studies have explored the diffusion of PV systems in different contexts.
McEachern and Hanson (2008) study the adoption process of PV systems across 120
villages in Sri Lanka and find that PV system adoption is driven by expectations of
whether the government will connect the villages to the electricity grid, as well as
tolerance for non-conformist behavior in the villages. Such findings suggest the
possibility of social interactions influencing the decision to adopt a PV system, in line
with a large literature on spatial knowledge spillovers in the form of neighbor or peer
effects (Glaeser et al., 1992; Foster and Rosenzweig, 1995; Bayer et al., 2009; Conley
and Udry, 2010; Towe and Chad, 2013).

Bollinger and Gillingham (2012) are the first to demonstrate an effect of previous
nearby adoptions on PV system adoption. Specifically, Bollinger and Gillingham use a
large dataset of PV system adoptions in California to show that one additional previous
installation in a zip code increases the probability of a new adoption in that zip code by
0.78%. Bollinger and Gillingham find evidence of even stronger neighbor effects at the
street level within a zip code and use a quasi-experiment to verify their results. Richter
(2013) uses a similar empirical strategy to find small, but statistically significant,
neighbor effects in PV system adoption at the postcode district level in the United
Kingdom. Both studies artificially constrain such effects along postal boundaries,
potentially risking spatial measurement error. Our analysis avoids such artificial
boundaries to provide a more precise understanding of how neighbor effects dissipate
over space. At the same time, we are also the first to demonstrate how such effects
dissipate as the time between adoptions increases. Moreover, these previous studies do
not explore the spatial patterns of diffusion PV systems, which may provide insight into
future technology diffusion.
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Rode and Weber (2013) use spatial bands around grid points to reduce the possible
measurement error bias from artificial borders. Using an epidemic diffusion model, they
estimate localized imitative adoption behavior in Germany that diminishes over space.
Their approach uses over 550,000 observations coded around a grid of points 4–20 km
apart covering Germany. Müller and Rode (2013) focus on a single city in Germany,
Wiesbaden, and use the actual physical distance between new adoptions in a binary
panel logit model. Müller and Rode also find a clear statistically significant relationship
between previous nearby adoptions that diminish with distance.1 Neither Rode and
Weber (2013) nor Müller and Rode (2013) explore the spatial patterns of diffusion or
other factors that may influence PV system adoption.

All studies attempting to identify a spatial neighbor or peer effect must argue that
they overcome the classic identification challenges of identifying peer effects:
homophily, correlated unobservables and simultaneity (Brock and Durlauf, 2001;
Manski, 1993; Moffit, 2001; Soetevent, 2006). Homophily, or self-selection of peers,
could bias an estimate of a spatial peer effect upward if neighbors with similar views
and interests move to the same neighborhoods. In this case, the coefficient on the
previous nearby installations would simply capture common preferences. Correlated
unobservables, such as localized marketing campaigns, would also clearly pose an
endogeneity concern. Finally, simultaneity or ‘reflection’ could also bias estimates to
the extent that one is affected by their peers just as their peers affect them.2

Hartmann et al. (2008) discuss approaches to address each of these identification
issues, including the fixed effects and quasi-experimental approaches taken in some
studies, such as Bollinger and Gillingham (2012). In this study, we address the
possibility of homophily with a rich set of fixed effects at the Census block group level.
To control for the possibility of time-varying correlated unobservables, we include
block group-semester fixed effects. Finally, simultaneity is not a concern for our
estimation of spatial neighbor effects because we use previously installed PV systems.
Our fixed effects strategy also addresses potential confounders for the other factors we
examine that may influence the adoption of PV systems. Our empirical strategy
combined with our new spatiotemporal variables provides new insight into the spatial
and temporal nature of solar PV neighbor effects, as well as other factors that mediate
the diffusion of solar PV.

The remainder of the article is organized as follows. In Section 2, we provide
institutional background on the solar PV system market in our area of study, CT.
In Section 3 we present our data sources and summarize our detailed dataset of PV
systems in CT. Section 4 analyzes the spatial patterns of diffusion of PV systems
using geostatistical approaches. In Section 5 we describe our approach to empirical
estimation, including the development of our spatiotemporal variables, our empirical
model and our identification strategy. Section 6 presents our empirical results, showing
the primary factors that have influenced diffusion of solar PV in CT, such as spatial
neighbor effects and area geography. Finally, Section 7 concludes with a discussion of
our findings and policy implications.

1 Rai and Robinson (2013) provide further evidence suggestive of neighbor effects with survey data of PV
adopters in Austin, Texas. Of the 28% of the 365 respondents who were not the first in their
neighborhood to install, the vast majority expressed that their neighbors provided useful information for
their decision.

2 See Bollinger and Gillingham (2012) for a mathematical exposition of each of these issues.
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2. Background on solar policy in CT

The state of CT is a valuable study area for the diffusion of PV systems. Despite less
solar insolation when compared with more southerly states, CT is surprisingly well
suited for solar, with high electricity prices, a relatively dispersed population with many
suitable rooftops and few other renewable energy resources (EIA, 2013; REMI, 2007).
Moreover, the CT state government has been very supportive of solar PV technology,
with several ambitious state programs. At the utility level, electric suppliers and
distribution companies in CT are mandated to meet a Renewable Portfolio Standard
(RPS) that requires 23% of electricity to be generated by renewable energy sources by
2020. Furthermore, CT Public Act 11-80 of 2011 requires the CT Clean Energy Finance
and Investment Authority (CEFIA) to develop programs leading to at least 30MW of
new residential solar PV by 31 December 2022. This solar energy can be used in support
of the utility RPS requirement, leading to more utility support for PV systems than in
other states (DSIRE, 2013).

The CEFIA programs involve state incentives, which started at $5/W in 2005 and are
currently $1.25/W for resident-owned systems up to 5 kW (there is a similar incentive
scheme for third-party owned systems), as well as a series of community-based
programs to promote PV systems (Cadmus Group, 2014).3 These programs, begun in
2012, designate ‘Solarize’ towns that choose a preferred installer, receive a group buy
that lowers the price with more installations and receive an intensive grassroots
campaign with information sessions and local advertising. The first phase of the
program involved four towns, subsequently expanded to five by March 2013. As of
February 2014, the program involves 30 participating towns out of the 169 across the
state, and has been quite successful in increasing the number of installations in these
towns (Solarize CT, 2013).4

3. Data

To study the drivers and the spatial patterns of PV systems adoption in CT, we rely on
several sources, as described in this section.

3.1. PV system adoptions

CEFIA collects and maintains a database with detailed technical and financial
characteristics of all residential PV systems adopted in state that received an incentive
since the end of 2004. The database, updated monthly, contains detailed PV system
characteristics for nearly all installations in CT.5 Two variables are particularly

3 As of 6 January 2014, the Residential Solar Investment Program incentive for system above 5 kW is $0.75/
W, up to 10 kW. Performance-based incentives are also available and as of 6 January 2014 are set at
$0.18 kW/h. Third party-owned systems make up �20% of our sample, and their incentives have changed
over time in parallel to resident-owned systems.

4 The Phase I Towns are Durham, Fairfield, Portland and Westport. The Phase II Towns are Bridgeport,
Canton, Coventry and Mansfield/Windham. The current towns (as of February 2014) are Ashford,
Chaplin, Hampton, Pomfret, Cheshire, Columbia, Lebanon, Easton, Redding, Trumbull, Enfield,
Glastonbury, Greenwich, Hamden, Manchester, Newtown, Roxbury, Washington, Stafford, West
Hartford and West Haven. Some towns participate as a joint effort.

5 Our understanding is that the only PV systems not in the CEFIA database are those in the small
municipal utility regions (e.g. Wallingford, Norwich and Bozrah). We expect that these are few.
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important for this study: the application date and the address. Using the address
information, we successfully geocoded 3833 PV systems that were installed in CT from
2005 through the end of September 2013 at the Census block group level, out of the
3843 installations in the database.

Despite a slight reduction in new systems in 2011, CT residents have steadily adopted
an increasing number of residential PV systems each quarter, as shown in Figure 1.
In the last four quarters for which data are available, adoptions averaged 340 per
quarter, or 11.7% increase from quarter to quarter. We will explore the spatial patterns
of this technology diffusion in Section 4.

3.2. Demographic, socioeconomic and voting data

We focus our analysis on the Census block group level, which is the most disaggregated
level available for which key variables, such as median household income, are available.
There are 2585 block groups in CT. We drop ocean block groups, and those including
only university campuses or prisons, such as Yale University in New Haven and the
prison block groups in Somers. We retained 2574 (99.6%) of the block groups. In
Table 1, we summarize the descriptive statistics for each variable in our dataset.

We use socioeconomic and demographic data from several waves of the US Census.
We use the 2000 and 2010 US Decennial Census as well as the 2005–2009, 2006–2010
and 2007–2011 waves of the American Community Survey (ACS) (US Census Bureau,
2013). Since Census boundaries changed after the 2005–2009 ACS, we convert the 2000
Census and 2005–2009 ACS to the 2010 Census boundaries. For this conversion,
we calculate the share of land assigned and lost to and from each block group and then
take a weighted average of the variables in the 2000 boundaries based on land area.
Once all of the Census data are based on 2010 boundaries, we use a quadratic regression
to interpolate values for the unobserved years, providing a panel of socioeconomic and

Figure 1. Total and additional adoptions PV systems in CT over time.
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demographic data.6 The Census data also include built environment variables such as

housing density, the number of houses and the share of renters. We also add the

quarterly average unemployment rate (not varying over block groups), which controls

for the general health of the economy (FRED, 2013). In addition, we bring in the

statewide annual electricity price average from the preceding year to account

for changes in electricity prices, which may affect the attractiveness of PV systems

(EIA, 2013).
We also use voter registration data provided by the Connecticut Secretary of State

(SOTS). These data are collected on the last week of October of every year (CT SOTS,

2013). They include both active and inactive registered voters for each of the major

political parties, as well as total voter registration. Unfortunately, SOTS data only

provide aggregate data on ‘minor party’ registration, so we are unable to separately

identify enrollment in green and environmental parties from enrollment in other minor

parties, such as the libertarian party. Using an analogous methodology to our approach

for the Census data, we develop an estimate for block group-level political affiliation

from the precinct-level data provided.

Table 1. Summary statistics

Variables Mean SD Min Max Source

Count of new PV systems by block group and quarter 0.04 0.27 0 18 CEFIA (2013)

Installed base 0.48 1.24 0 39 CEFIA (2013)

Average neighboring installations, 0.5 miles, 6 months 0.005 0.08 0 5 Calculated

Average neighboring installations, 0.5–1 mile, 6 months 0.006 0.09 0 6 Calculated

Additional number of new installations, 1–4 miles,

6 months

0.05 0.57 0 58 Calculated

Average neighboring installations, 0.5 miles, 12 months 0.009 0.17 0 16 Calculated

Average neighboring installations, 0.5–mile, 12 months 0.008 0.16 0 14 Calculated

Average neighboring installations, 1–4 miles, 12 months 0.067 0.88 0 72 Calculated

Number of housing units (1,000 s) 0.61 0.37 0.01 13.38 US Census

Housing density (0.001 s) 0.79 1.30 40.01 28.91 Calculated

Renter-occupied houses (%) 32.03 27.82 0 100 US Census

Median household income (tens of thousands of

2013 dollars)

7.89 4.71 0.15 76.86 US Census

Population who are white (%) 77.38 23.45 0 100 US Census

Population who are black (%) 10.70 16.86 0 100 US Census

Population who are Asians (%) 4.34 5.79 0 73.12 US Census

Median age 40.41 8.50 11.10 80 US Census

Median age in highest 5% 0.10 0.30 0 1 US Census

Democrats (%) 37.70 13.73 0 75.23 CT SOTS

Population in minor parties (%) 0.53 0.56 0 7.06 CT SOTS

Electricity cost (Cent/kWh) 18.39 1.40 16.28 20.46 EIA (2013)

Unemployment (%) 7.04 1.99 4.4 9.9 FRED (2013)

Solarize CT 0.005 0.07 0 1 CEFIA (2013)

Note: All variables have 90,090 observations, where the observation is a block group-year-quarter.

6 We use the mid-point of each ACS to provide values for 2007, 2008 and 2009. We carefully checked the
interpolation and when it led to unrealistically low or high values, we cut off the values at 18 years for a
minimum median age and 70 years for a maximum median age, and we cut all probabilities at 0 and 100.
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We calculate housing density by dividing population by land area. The land area
field used is ‘ALAND’ in shapefiles available from the Map and Geographic
Information Center (MAGIC) at the University of Connecticut (MAGIC, 2013).
‘ALAND’ is not the ideal field, for there may be land uses that should not be included
(e.g. wetlands and forest), and it misses local differences in types of housing
units. However, it captures the broader differences in housing across block groups
quite well, with higher housing density in center cities and decreasing housing density
further out.

3.3. Spatial data

To examine the factors influencing patterns of diffusion of PV systems, we combine
spatial data (GIS layers and map data) with the adoption data contained in the CEFIA
Solar database. Our sources for the spatial data are the CT Department of Energy and
Environmental Protection (DEEP, 2013) and the University of Connecticut MAGIC
data holdings mentioned earlier.

4. Spatial patterns of PV system diffusion

4.1. Adoption rates across towns in CT

The diffusion of PV systems displays surprising spatial patterns across CT.
Figure 2 shows the density of PV systems at the town level as of September

Figure 2. PV system density and Phases I and II Solarize CT towns in 2013.
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2013.7 The two upper corners of the state show higher per-capita density, with

northwestern CT recording among the highest values. These towns are mostly rural

or semi-rural communities, with a strong presence of vacation homes for residents of

the New York and the Greater Boston areas. In the southern-central part of the

state, the town of Durham (a Phase I Solarize town) shows among the highest rate

of adoption in the state.
A knowledgeable CT resident will quickly observe that PV system adoption does

not entirely follow patterns of income in CT. For example, the southwestern corner of

the state hosts some of the wealthiest municipalities in the USA, yet displays a lower

rate of adoption than the much less wealthy towns in southeastern CT. This can be seen

clearly in Figure 3.

7 As mentioned above, Norwich, Bozrah and Wallingford are served by municipal utility companies and do
not participate in the CEFIA incentive program. Thus, these towns have no data.

Figure 3. PV systems and median household income in CT in 2013.
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4.2. Hot spots and cold spots in PV system diffusion

Looking at adoption rates by town provides insight, but aggregating results at the town
level imposes artificial boundaries, reducing the effects of agglomerations at the edges
of towns, which may be particularly problematic for smaller and more densely
populated towns. For a clearer picture of the location of agglomeration clusters of PV
systems, we use two well-known spatial techniques: Optimized Getis-Ord method
(OGO) and Anselin’s cluster and outlier analysis (COA) (Anselin, 1995; Getis and Ord,
1992; Ord and Getis, 1995). These approaches have been applied to many fields, from
epidemiology (Robinson, 2000) to land use change and sustainability (Su et al., 2011).
By identifying agglomeration clusters and mapping them against other spatial
factors, these approaches provide guidance on the underlying factors influencing
adoption.

We run these techniques using ESRI’s ArcMap 10.2. Both require aggregated data to
achieve variability within the adoption values. Our scale is the block group level; thus,
we use the geographic center (centroid) of each block group as the point of reference.
For COA, we use a 10-mile threshold and an inverse distance spatial relationship. OGO
chooses the threshold to optimize the balance between statistical significance and
observation size and thus is self-selected by ArcGIS. Of course, these methodologies
are sensitive to the input parameters, so we test each with different thresholds,
starting at 1-mile radius around each block group centroid, up to the cutoff distance
of 10 miles. We find little difference in the results. In fact, using COA, results
did not change appreciably even using the maximum distance in the study area as the
threshold.

Figure 4 presents the results of the spatial analysis. For reference, Figure 4(A) shows
the housing density in CT by Census block group and the geocoded PV systems;
Figure 4(B) presents the results from the OGO approach; and Figure 4(C) shows the
results from the COA approach. Hartford is highlighted as a reference town across
the maps.

The results are consistent across the three methodologies: there is clustering of hot
spots in the northeastern, central-eastern and southeastern parts of CT. In addition,
there is a hotspot in Fairfield County in southwestern CT. There is a clustering of
cold spots through the middle of the state, which corresponds with the most densely
populated urban areas, which includes urban areas such as New Haven, Bridgeport,
Meriden and Waterbury. Interestingly, there also appears to be a cold spot in some of
the wealthiest areas of CT in the southeast, which includes towns such as Greenwich
and Stamford. These initial results do not mean that income plays no role in the
adoption process. Rather, it suggests that policies aimed solely at lowering the cost of
PV systems are not enough to speed the adoption of PV systems. These maps greatly
enrich our view of the diffusion of PV systems and underscore the complex
relationships between housing density and income, and the rate of PV system
adoption.

4.3. Spatial patterns of diffusion over time

The diffusion of any new technology is a dynamic process, which often exhibits a
characteristic spatial pattern over time. For example, classic diffusion models often
show that new technologies are adopted in a centrifugal, wave-like pattern, starting
from larger population centers (Hägerstrand, 1952; Brown, 1981).
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To examine the pattern of diffusion over time and space, we use a methodology called

fishnetting (Mitchell, 2005). In our context, fishnetting divides CT into cells of a

specified size and then highlights the cells based on the number of adoptions in the cell.

This approach is particularly useful for visualizing diffusion patterns because it

disaggregates the process into a smaller scale than town or block group.
We specify the size of each cell in the fishnet as 1.5 km, a length small enough to

effectively disaggregate our block-group level data, but large enough to capture more

than one adoption in each cell. Figure 5 illustrates our fishnetting analysis for adoption

Figure 4. Spatial distribution of PV system hot spots and cold spots using different
approaches. (A) PV systems and housing density. (B) Optimized Getis-Ord (OGO). (C) Local
Moran’s I (COA) results.
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at the end of 2005 and at the end of our dataset in 2013. Each colored cell displays the
actual number of installations within 2.25 km2.

In Figure 5, we highlight two areas: Westport-Fairfield (black outline) and
Windham-Mansfield (red/grey outline). In Westport-Fairfield, we see a case of town
that already had PV system adoptions in 2005, and these adoptions multiplied
substantially by the beginning of 2013. In contrast, Windham-Mansfield had no
adoptions in 2005 and had very few adoptions in neighboring cities. Yet, with the Phase
II Solarize program providing a major boost, the two towns now have a very high
density of PV systems, with up to 24 adoptions in 4.5 square miles. These examples
highlight the factors that influence the dynamics of the diffusion process in CT: areas
‘seeded’ with installations early on appear to have an increasing density of adoption,
while at the same time programs like Solarize can dramatically increase the number of
PV systems in a locality in a short time.

The fishnetting approach is also well suited for testing the hypothesis that the
diffusion of PV systems follows the typical pattern of diffusion from larger population
centers. To examine the spatial relationship between population and PV system
adoption, we map the town population along with the fishnet of PV system adoptions
for 2005, 2008 and 2013 in Figure 6.

If the adoption process of PV systems followed the classic literature in exhibiting a
wave-like centrifugal pattern based in the largest towns, we would expect to see initial

Figure 5. Fishnetting reveals the patterns of adoption of PV systems between 2005 and 2013.
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concentrations within the largest towns in the state, with adoptions multiplying within
these areas and diffusing to the smaller towns over time. Of course, not all
technologies are the same, and PV systems may well display a different pattern of
diffusion.

We find that PV systems diffuse not only from the largest centers, but also from many
midsized and smaller towns. For example, consider Durham, in south-central CT, with
a population of 7388, which is about one-third of the state mean of 21,300 residents per
town. Durham hosted one of the very first PV systems, and, as of September 2013, it
has the highest number of PV systems in the state (143), thanks, in part, to the Solarize
CT program. In fact, the Solarize CT program appears to strengthen the role of
midsized centers, building on the clustering that began before the program.

We also find that new agglomeration centers appear over time in areas that did not
have installations in 2005. For example, the town of Bethlehem (population 3607) had
neither a single PV system in 2005 nor a neighboring town with one. By the end of 2008,
the town still had very few adoptions. By 2013 it had 23 PV systems. Interestingly, it
appears that other towns around Bethlehem followed suit, with increasing number of
PV systems, perhaps indicative of a centrifugal pattern of diffusion.

Why might we see midsized and smaller towns acting as centers for diffusion of PV
systems, in contrast to the classic results? The combination of the technical
characteristics of PV systems along with the built environment and institutional setting

Figure 6. The spatial pattern of adoption does not simply follow the population distribution;
even at early stages of adoption solar PV systems diffuse from small- and medium-sized centers.
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in CT provides likely explanations. Most directly, PV systems are most suitable for
single-family housing, due to the larger roof space and lack of split incentives that
multifamily dwellings must contend with. Many of the single-family homes in CT that
are well suited for PV systems are in smaller communities.

In addition, local permitting regulations and fees have an important influence on the
speed and difficulty of installing a PV system. A new pro-solar local administration can
expedite the process of installing a PV system and provide an example for neighboring
towns. This could quickly change a town from a town with few adoptions to source of
diffusion waves. The Solarize program has the potential to do the same.

These results, while deviating from the classic models of diffusion, make sense and
may apply in other contexts as well. Of course, a different set of regulatory,
socioeconomic and technological characteristics would likely create a very different
pattern. The results in McEachern and Hanson (2008), indicating a wave-like pattern
emanating from peripheral villages with limited connection to the central grid, are a
case in point. In the next section, we turn to an empirical model designed to explore the
factors that underlie the spatial diffusion patterns observed here.

5. Empirical approach

5.1. Creation of the spatiotemporal neighbor variables

One major factor that may mediate the diffusion of solar PV is the presence of spatial
neighbor effects. At the heart of our empirical approach is our methodology for
creating spatiotemporal variables to capture the influence of previous neighboring
installations on adoption.

For each PV system application in the database, we record how many PV systems
had previously been completed within a 0.5-, 1- and 4-mile radius of the installation. We
make the calculation recording the number of installations within each radius in the 6
months prior to the installation, 12 months prior, 24 months prior and since 2005 (there
were very few installations prior to 2005 in CT). We also remove other installations with
applications occurring within 120 days prior to each observation k. This entirely avoids
the simultaneity, or reflection, problem discussed in Section 1 and greatly reduces the
likelihood that the decision to install is made before some of the other neighbors chose
to install.8

In other words, for each PV system k, we counted the number of neighboring
installations j, such that:

dk;j � D;

tk � tj � T or tk � tj;

and

tk � tj >W

where dk,j is the Euclidean distance (in feet) between PV systems k and j, D is the
distance specification (2640, 5280 or 21120 feet), tk is the application date of PV system

8 We choose 120 days as a conservative assumption, but it turns out that our results are very robust to this
assumption. Using a 30-day window, or even no window, does not appreciably change the results.
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k, tj is the application date of PV system j, T is the temporal lag (e.g. 6 months) andW is

the time window of installations assumed to be simultaneously decided (e.g. 120 days).
To more precisely examine the effect at each distance, we subtract the inner distances

from the outer radii, to see an effect within 0.5 miles, from 0.5 to 1 mile and from 1 mile

to 4 miles. This approach is a multiple-ring buffer method, where the buffers are both

spatial and temporal, as shown graphically in Figure 7.
These spatiotemporal counts of nearby PV systems capture the relevant previous

installations that we hypothesize will influence the household decision to adopt a PV

system. We finally convert these variables to the block-group level by calculating the

mean of the spatiotemporal count in that block group for each of the radii and period.

This provides a useful measure of the average number of neighbors that are influencing

new adopters in a block group. Since the variable is at the block-group level, it can be

matched with our Census data to allow for a panel data analysis. We call these block-

group level variables our ‘spatiotemporal neighbor’ variables.
This approach has significant advantages over the previous approaches to quantify-

ing spatial neighbor effects. For example, Bollinger and Gillingham (2012) use

variables for the cumulative number of installations in a zip code, which they call the

‘installed base’, as well as the cumulative number of installations on a street in a zip code.

Estimates based on the zip code may be subject to a measurement error bias, analogous

to the well-known areal bias (e.g. Openshaw, 1984), for there is a clear bias for

Figure 7. Selection of all neighbors since 2005 (left) and in previous 12 months (right).

828 . Graziano and Gillingham

,
,
,
in order 
,
-
-
-
``
''
``
''
)


households on the edge of zip codes. Moreover, zip codes are much larger than block
groups.

Müller and Rode (2013) avoid this potential measurement error bias by examining
the distance between 286 geocoded buildings with PV systems in Wiesbaden, Germany.
Despite the small sample, this is an improvement over a zip code-level or street-level
analysis. However, from a spatial perspective, several possible errors were introduced:
issues with geocoding led to 149 of the PV systems assigned to proximate buildings and
38 PV systems that were second or third systems on these buildings were allocated to
nearby buildings rather than assigned to the building they were on. From an
econometric perspective, a reader may also be concerned that no effort was taken to
address the classic issues in identifying peer effects discussed in the Section 1. We feel
that our approach is a useful compromise that allows for a block group panel data
analysis to address peer effect identification concerns, while at the same time leveraging
careful spatial analysis to reduce spatial measurement error.

5.2. Model of demand for PV systems

To examine the factors that influence residential PV system adoption, we model the
demand for residential PV systems in a block group i and at time t as a function of a
variety of socioeconomic, demographic, political affiliation, built environment, policy
and installed base variables. Our specification can be parsimoniously written as follows:

PVcounti;t ¼ �þNi;t �þ Bi;t � þDi;t � þ �Si;t þ �i þ �t þ "i;t

where PVcounti,t is the number of new PV system adoptions in block group i at time t;
Ni,t is a vector of the spatiotemporal neighbor variables described earlier (we run
separate regressions for 12 months prior and 24 months prior); Bi,t is a vector of built
environment variables; Di,t is a vector of socioeconomic, demographic and political
affiliation variables; Si,t is an indicator variable for whether or not a block group is part
of a Solarize CT campaign at time t; �i is block group fixed effect; �t is time dummy
variable; and "i,t is a mean-zero error term.9 In one of our specifications, we consider
the number of new adoptions in a year-quarter (i.e. 2005Q1), so t is the year-quarter.
In addition, we also examine a specification with block group-semester fixed effects
(the two semesters are defined as the January through June and July through
December). In this specification, �i and �t would be combined into a single interaction
fixed effect.

Vector Di,t contains variables for the average quarterly unemployment to capture
overall economic conditions, the electricity price (largely constant within utility region
over time), median age, a dummy for the median age being in the oldest 5% of our
sample to capture concentrations of elderly, percentage of population who are white,
percentage of the population who are black, percentage of the population who are
Asian, median household income, percentage of registered voters who are democrats
and percentage of voters who are registered to minority parties (e.g. the Green Party or
Libertarian Party). These variables are important controls and are also useful to
interpret. For example, the political affiliation variables help us understand the effects

9 We use a fixed effects approach, as a Hausman test results allow us to reject the orthogonality assumption
of the random effects model at 99% confidence level.
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of environmental values on the adoption of PV systems, for democrats consistently tend
to vote in favor of RPS regulations (Coley and Hess, 2012).

The vector of built environment variables Bi,t includes the housing density, the
number of houses and the share of renters. These variables control for differences in
the number of households available to install PV systems. Finally, our block group
fixed effects and time dummies are critical for controlling for unobserved heterogen-
eity at the block group level and over time. For example, block group fixed effects
control for any non-time-varying block group-specific unobservables, such as a solar
installer being headquartered in that location. Time dummies help control for broader
trends in increased adoption over time due to lower prices and increased awareness
of PV systems. Furthermore, our results with block group-semester fixed effects
address the possibility that there are localized trends that work at the sub-yearly level
that could confound our estimate of the peer effect. For instance, if a new
solar installer moved into a block group, we might see a surge of adoptions in a
localized area.

5.3. Estimation and identification

We estimate this model first using a linear fixed effects approach and then using a
negative binomial approach as a robustness check. The negative binomial model is a
common approach for use with count data when the mean of the count variable does
not equal the variance, but it involves additional structural assumptions about the
relationship (e.g. Cameron and Trivedi, 1998). We also examine the results of a Poisson
model as an additional check.

Our approach follows the logic in Bollinger and Gillingham (2012) and discussed in
Hartmann et al. (2008) by using a flexible set of fixed effects to identify spatial peer
effects. Block group fixed effects clearly control for endogenous group formation
leading to self-selection of peers (homophily). Simultaneity, whereby one household
influences others at the same time that they are influenced by others, is addressed by the
temporal lag between when the household decision to adopt is made and when others
have adopted. Specifically, we create our spatiotemporal installed base variables in such
a way that we are focusing on the effect of previous installations on the decision to
adopt. Finally, we flexibly control for correlated unobservables, such as time-varying
marketing campaigns or the opening up of a new headquarters by an installer, with
block group-semester fixed effects. These approaches follow the state-of-the-art in the
literature in identifying peer effects in the absence of a quasi-experiment and at the same
time address possible identification concerns regarding the coefficients on the other
covariates of interest.

For our primary empirical strategy to identify the neighbor effect coefficients, we
must assume that there is not a continuous time trend of growth of PV system
that could lead to a spurious correlation between the spatiotemporal variables
and adoptions. To assuage this concern, we also estimate the model with a set of year-
specific time trends. Our identification also rests on the assumption that the fixed effects
demeaning transformation does not lead to endogeneity due to shocks previous to
adoption entering both the spatiotemporal variables and the error (see Narayanan and
Nair, 2013 and Bollinger and Gillingham, 2012, for a mathematical treatment of this
potential issue). A first-differencing approach avoids this concern, and thus we examine
the results of a first-difference estimator as well.
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6. Results

6.1. Primary results

We are particularly interested in the vector of parameters �, which tells us the extent to

which spatial neighbor effects influence the decision to adopt PV systems. In addition,

we are also interested in many of the other coefficients to help us better understand

the influence of different built environment, socioeconomic, political affiliation and

demographic factors on the decision to adopt.
In Table 2, we present our primary results using the spatiotemporal variable that

includes installations from the previous 6 months. Column 1 presents OLS results with

year-quarter dummy variables to control for changing trends in the PV system market,

but no block group fixed effects. Column 2 adds block group fixed effects to also

control for unobserved heterogeneity at the block group level. Column 3 presents

results with block group fixed effects, yearly dummy variables and a linear time trend

interacted with each yearly dummy variable to address the possibility of an underlying

continuous trend that is correlated with our spatiotemporal variables. Finally, column 4

presents our preferred results, which include block group-year-semester fixed effects to

flexibly address possible time-varying correlated unobservables.
Looking across specifications, our results show robust evidence suggestive of a spatial

neighbor effect. Regardless of whether we include block group fixed effects, block

group-year-semester fixed effects or time trends, our spatiotemporal variables are

positive, statistically significant and of a similar magnitude. This finding demonstrates

that the mean number of installations surrounding households increases the number of

adoptions in that block group. For example, in column 4, the coefficient on the number

of neighbors within 0.5 miles indicates that one additional nearby installation within 0.5

miles in the previous 6 months increases the number of installations in the block group

per quarter by 0.44 PV systems on average. At the average number of block groups in a

town (15), this implies 26.4 additional PV systems per town due to the spatial neighbor

effect.
Furthermore, the change in the results with distance is intuitive. The coefficients are

generally smaller when we consider installations that are further away, such as between

0.5 and 1 mile, and between 1 and 4 miles. These results are consistent with Bollinger

and Gillingham (2012), who find evidence of a stronger effect of neighboring

installations at the street level than at the zip code level.
In contrast to Rode and Weber (2013), and Müller and Rode (2013), the spatial peer

effect does not appear to fade after 1 or 1.2 km. While the magnitude of the coefficient

decreases with distance, it is still highly statistically and economically significant in the

1–4 mile range.10 This result may be explained in part by a difference in area geography.

Wiesbaden, the city studied by Müller and Rode (2013), is an urban area with a

population density almost double the population density in CT (CIA, 2013; Statistik

Hessen, 2013). Moreover, the transportation system and physical mobility is quite

different: CT has 0.86 vehicles per capita, whereas Wiesbaden has only 0.52 (DOE,

2013; World Bank, 2013). We might expect spatial peer effects to be weaker, but to

10 We also performed specifications with a 1–2 and 2–4 mile range, which show a similar pattern, but with
less statistical significance.
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extend over a larger area, when potential adopters tend to move further to pursue their
normal social interactions.

Our results also highlight the important role of our built environment variables.
Consistent with our geospatial analysis, housing density appears to decrease adoption.

Table 2. Primary specifications including previous 6 months of installations

Year-quarter

dummies

BG FE and

year-quarter

dummies

BG FE and

time trends

BG-year-

semester FE

(1) (2) (3) (4)

Average neighbors within 0.5 miles 0.51*** 0.49*** 0.49*** 0.44***

(0.0110) (0.0996) (0.0996) (0.1000)

Average neighbors 0.5–1 mile 0.38*** 0.38*** 0.38*** 0.39***

(0.0106) (0.0828) (0.0828) (0.0832)

Average neighbors 1–4 miles 0.11*** 0.11*** 0.11*** 0.12***

(0.0016) (0.0227) (0.0227) (0.0224)

Number of housing units (1000 s) 0.032*** 0.014** 0.014** 0.0017

(0.0024) (0.0065) (0.0065) (0.0310

Housing density (0.001 s) 0.0066*** 0.0091*** 0.0091*** 0.0014

(0.0008) (0.0016) (0.0016) (0.0097)

Renter-occupied houses (%) 0.00029*** 0.00045*** 0.00045*** 0.00011

(0.0000) (0.0001) (0.0001) (0.0004)

Median household income ($10,000) 0.00048** 0.00058 0.00058 0.0038

(0.0002) (0.0005) (0.0005) (0.0047)

Population who are white (%) 0.00025** 0.00019* 0.00019* 0.00014

(0.0001) (0.0001) (0.0001) (0.0004)

Population who are black (%) 0.000035

(0.0001)

0.00024*

(0.0001)

0.00024*

(0.0001)

0.00024

(0.0004)

Population who are Asians 0.00067*** 0.00022 0.00022 0.00075

(0.0002) (0.0003) (0.0003) (0.0008)

Median age 0.00023 0.00014 0.00014 0.00096

(0.0001) (0.0002) (0.0002) (0.0008)

Median age in highest 5% 0.0074** 0.0081 0.0081 0.014

(0.0034) (0.0051) (0.0051) (0.0137)

Democrats (%) 0.000056 0.000061 0.000061 0.00031

(0.0001) (0.0003) (0.0003) (0.0012)

Population in minor parties (%) 0.0017 0.0046 0.0046 0.0096

(0.0016) (0.0029) (0.0029) (0.0090)

Electricity cost (Cent/kWh) 0.0028 0.0030*** 0.0036*** 0.00072

(0.0017) (0.0009) (0.0009) (0.0014)

Unemployment (%) 0.00071 0.00092 0.000097 0.00027

(0.0011) (0.0007) (0.0009) (0.0019)

Solarize CT 0.80*** 0.77*** 0.77*** 0.87***

(0.0114) (0.1127) (0.1127) (0.2001)

Constant 0.073** 0.058*** 0.064*** 0.0039

(0.0336) (0.0209) (0.0183) (0.0681)

R2 0.25 0.24 0.24 0.19

Observations 90,090 90,090 90,090 90,090

Notes: Dependent variable is the number of installations in a block group (BG) in a year-quarter. An

observation is a BG-year-quarter. Standard errors clustered on BG in parentheses.

* denotes P50.10, **P50.05 and ***P50.010.
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Similarly, the share of renters decreases adoption. These results are consistent with the
presence of split incentive problems in multifamily and renter-occupied dwellings
(Bronin, 2012; Gillingham et al., 2012; Gillingham and Sweeney, 2012). In owner-
occupied multifamily dwellings, it may not be possible to prevent free-ridership and
recoup the costs of the installation. Similarly, when the landlord pays for electricity in a
rental arrangement, the landlord may not be able to contract with the renter to pay for
the cost of the installation. Even when the renter pays for electricity, there may still be
barriers: the renter may not have permission to install a PV system and may not plan on
staying in the dwelling long enough to make a PV system pay off.

Our results are less statistically significant when it comes to most other socio-
economic and demographic variables. There is weak evidence that higher median
household income increases adoption, which may not be surprising, given the
complicated spatial relationship shown in Section 4 between income and PV system
adoption. The racial variables are largely not statistically significant, with only weak
evidence of more adoption when there is a higher percentage of whites in the block
group. The political affiliation variables and the unemployment rate are not statistically
significant.

The electricity price is positive and highly statistically significant in columns 2 and 3,
and positive in the remaining columns. The result in column 2 can be interpreted as
indicating that a $1 increase in the electricity cost increases the number of adoptions in
a block group and a year-quarter by 0.3 additional installations. The Solarize campaign
dummy variable has a highly statistically significant and positive effect on adoptions.
The result in column 4 suggests that the presence of a Solarize program in a block group
leads to 0.87 additional installations in that block group per year-quarter.

To summarize, we find strong evidence of localized spatial neighbor effects and built
environment variables influencing the adoption of PV systems and much weaker
evidence of other socioeconomic, demographic and political affiliation variables
influencing adoption. This result may seem surprising, but in light of the spatial
patterns seen in Section 4, it makes a great deal of sense.

6.2. Diminishing effects over time

While the previous literature has shown that neighbor effects may decrease over
calendar time with the diffusion of solar PV (Richter, 2013), and as the installed base
increases (Bollinger and Gillingham, 2012), we hypothesize that the neighbor effect may
also diminish for each installation as more time passes since the previous installations
occur.11 Table 3 demonstrates this diminishing neighbor effect over time since prior
installations. All columns contain block group-year-semester fixed effects, just as in our
preferred specification in Table 2. Column 1 repeats column 4 in Table 1 for reference.
Column 2 extends the spatiotemporal variables to include previous installations up to
12 months prior. Column 3 extends these variables further to include all previous
installations since 2005, when the CT market really began. Column 4 includes the classic
installed base variable for comparison with the results in Bollinger and Gillingham.

11 Consistent with Richter (2013), we also run specifications over time and find that the neighbor effects
change over time. In our context, they approximately double when going from the 2005–2011 period to
the 2012–2013 period.
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The results in columns 1–3 provide strong evidence that the spatial neighbor effects
diminish over time since an installation occurs. This is intuitive and suggests that
previous installations have less of an effect on increasing the likelihood of new
installations as time goes on. After a year or two, households are likely to already be
aware of previous installations, and thus would be less affected by them. The results in
column 4 indicate a highly statistically significant and positive installed base effect,
indicating that one additional installation in the installed base increases adoptions in a
block group by 0.27 in that quarter. This is a roughly comparable effect to the effect
shown in our spatiotemporal variables, but appears to be an average of the effect over

Table 3. Diminishing neighbor effects with time prior to installation

Block group-year-semester FE

6 Months 12 Months Since 2005 Installed base

(1) (2) (3) (4)

Average neighbors within 0.5 miles 0.44*** 0.22** 0.040**

(0.1000) (0.1048) (0.0164)

Average neighbors 0.5–1 mile 0.39*** 0.051 0.023*

(0.0832) (0.0752) (0.0136)

Average neighbors 1–4 miles 0.12*** 0.081*** 0.031***

(0.0224) (0.0140) (0.0019)

Installed base 0.27***

(0.0279)

Number of housing units (1000 s) 0.0015 0.0069 0.0097 0.24***

(0.0311) (0.0317) (0.0259) (0.0617)

Housing density (0.001 s) 0.0014 0.0045 0.010 0.076***

(0.0097) (0.0080) (0.0093) (0.0151)

Renter-occupied houses (%) 0.00011 0.000018 0.00033 0.00082

(0.0004) (0.0004) (0.0004) (0.0005)

Median household income ($10,000) 0.0038 0.00082 0.0027 0.0063

(0.0047) (0.0042) (0.0037) (0.0057)

Median age 0.00097 0.00051 0.00094 0.00098

(0.0008) (0.0008) (0.0007) (0.0012)

Median age in highest 5% 0.014 0.0045 0.0082 0.024

(0.0137) (0.0143) (0.0112) (0.0258)

Electricity cost (Cent/kWh) 0.00017 0.00045 0.00058 0.0071

(0.0014) (0.0015) (0.0013) (0.0019)

Unemployment (%) 0.00021 0.0040** 0.0023 0.015***

(0.0018) (0.0019) (0.0017) (0.0035)

Solarize CT 0.87*** 0.21 0.40*** 0.63***

(0.2002) (0.2350) (0.1934) (0.1053)

Constant 0.0052 -0.072 0.045 0.045

(0.0675) (0.0705) (0.0554) (0.0554)

Race variables X X X X

Political affiliation X X X X

R2 0.19 0.19 0.34 0.34

Observations 90,090 90,090 90,090 90,090

Notes: Dependent variable is the number of installations in a block group (BG) in a year-quarter. An

observation is a BG-year-quarter. Standard errors clustered on BG in parentheses.

* denotes P50.10, ** P50.05 and *** P50.010.
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space and time. A major contribution of this article is that it allows for a much more
detailed view of the levels at which neighbor effects work.

6.2. Further robustness checks

We perform several robustness checks on our primary results in Table 2, such as
varying the spatial distance and time frame of our spatiotemporal variables and
exploring additional fixed effects specifications. We do not report these results here for
they are entirely consistent with the results in Table 2. However, we do report two
interesting robustness checks in Table 4. Column 1 shows the results where we control
for block group unobserved heterogeneity using first-difference results rather than the

fixed effects transformation. These results also include year-quarter fixed effects.
Column 2 presents the results of a negative binomial estimation with year dummy
variables (the model did not converge with year-quarter dummy variables or with block
group fixed effects). Both use spatiotemporal variables that include installations over
the previous 6 months to be at least somewhat comparable with the results in Table 2.

The first-difference results are very reassuring. The coefficients on the spatiotemporal
variables are very similar to those in Table 2 and are nearly identical for the average
neighbors adopting between a 0.5–1 mile and 1–4 miles. The first-difference estimation
results suggest coefficients that are slightly smaller for the average neighbors adopting
within 0.5 mile, but still quite similar to those in Table 2.

As mentioned in Section 5, the nonlinear negative binomial model is a common
approach to use with count data for the dependent variable. It adds a structural
assumption, but this structure may make sense if adoptions occur according to a
negative binomial distribution. The negative binomial model is preferred to the other
common nonlinear model used for count data, the Poisson model, when the mean of the
count variable is not equal to the variance, for a characteristic of the Poisson

distribution is that the mean is equal to the variance.
In our data, the mean of our PV count variable is 0.04 and the variance is 0.07.

This suggests that a negative binomial model is preferable to a Poisson distribution.
The negative binomial results are larger than those in our preferred linear specification,
but tell the same overall story. These results can be viewed as confirmatory of our
previous results, which we view as our preferred results due to the ability to include
additional fixed effects as controls for unobserved heterogeneity.12

7. Conclusions

This article studies the primary drivers influencing the diffusion of solar PV systems

across time and space. We use detailed data on PV systems in CT, along with built
environment, socioeconomic, demographic and political affiliation data, to highlight
the key drivers through both a geospatial analysis and a panel data econometric
analysis.

12 Results from a Poisson model with block group fixed effects did converge, and also provided comparable
results, but with very weak statistical significance for nearly all coefficients, including the spatiotemporal
ones.

Spatial patterns of solar photovoltiac system adoption . 835

paper 
six
in order 
to
half
 mile and 
a
one
 mile to 
four
 a half
above 
paper 
,


Our geospatial analysis reveals that the pattern of PV system diffusion does not
simply follow patterns of housing density or income. The patterns we find indicate that
small and midsized centers of housing density are just as important—if not more
important—than larger centers as the main players for the diffusion of PV systems. We
speculate that this pattern in CT is a result of the state’s jurisdictional and
socioeconomic fragmentation, current regulations affecting adoption in multifamily
buildings and the Solarize community-based programs.

Our panel data analysis develops a new set of spatiotemporal variables that we have
not previously seen in the literature. These variables allow us to more carefully model
the spatial and temporal aspects of the influence of neighboring installations on the

Table 4. Further robustness checks

First-differences Negative binomial

(1) (2)

Average neighbors within 0.5 miles 0.37*** 1.11***

(0.0806) (0.2052)

Average neighbors 0.5–1 mile 0.33*** 0.97***

(0.0757) (0.1706)

Average neighbors 1–4 miles 0.12*** 1.04***

(0.0222) (0.0499)

Number of housing units (1000 s) 0.0015 0.67***

(0.00194) (0.0522)

Housing density (0.001 s) 0.0015 0.73***

(0.0037) (0.1507)

Renter-occupied houses (%) 0.00031 0.0099***

(0.0002) (0.0015)

Median household income ($10,000) 0.0017 0.0034**

(0.0019) (0.0037)

Electricity cost (Cent/kWh) 0.0011 1.32***

(0.0009) (0.1166)

Unemployment (%) 0.0097*** 0.075*

(0.0014) (0.0424)

Solarize CT 0.34*** 1.39***

(0.0609) (0.1453)

Constant 0.0050*** 29.1***

(0.0005) (1.9328)

Race variables X X

Age variables X X

Political affiliation X X

Block group effects X

Year-quarter dummies X

Year dummies X

R2 0.19

Observations 84,942 90,090

Notes: Dependent variable is the number of installations in a block group (BG) in a year-quarter.

An observation is a BG-year-quarter. The spatiotemporal variables include installations from the previous

6 months. Standard errors clustered on BG in parentheses.

* denotes P50.10, **P50.05 and ***P50.010.
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decision to install, while still retaining a panel data structure that allows us to address
the primary confounders of any peer effects or neighbor effects analysis: homophily,
correlated unobservables and simultaneity. We consider the refined scale of our analysis
as an important contribution.

We find evidence that the primary determinants of the patterns of diffusion of
PV systems in CT are spatial neighbor effects and built environment variables. The
electricity price and existence of a Solarize program also play a major role in influencing

adoption. Our results indicate that there are important spatial neighbor effects: adding
one more adoption in the previous 6 months increases the number of PV system
adoptions in a block group per year-quarter within 0.5 miles of the system by 0.44
systems on average. Over a year, this is roughly 26.4 additional systems per town when
taken at the average number of block groups in a town.

These empirical findings are consistent with the theoretical work by Brock and
Durlauf (2010) in showing how social interactions may lead to a different timing of
adoptions than can be explained by private characteristics. Of course, it is important to
interpret these results keeping in mind that CT is in the early stage of adoption of

PV systems, so the neighbor effect is influencing the early, exponential stage of a classic
‘S-shaped’ diffusion curve (Rogers, 1962). Applying these estimates to later stages in the
diffusion process would certainly be problematic. Eventually, nearly all rooftops
suitable for PV systems will have already been adopted, and block groups in CT will
become saturated.

Our built environment empirical results align with our spatial analysis. We find that
adoptions are decreasing in housing density and the share of renter-occupied dwellings,
corresponding to our finding that large centers are less important for the diffusion
of the new technology. We view these results as consistent with the possibility of

split incentives in multifamily and rental properties (Bronin, 2012; Gillingham and
Sweeney, 2012).

Besides providing fresh evidence on the nature of the diffusion process of an
important renewable energy technology, our results also have several policy and
marketing implications for CT and comparable settings. The demonstrated importance
of spatial neighbor effects is undoubtedly useful for PV system marketers and
policymakers interested in promoting PV systems, for it suggests carefully considering
measures to leverage such spatial neighbor effects. Indeed, the community-based

Solarize programs are designed to foster social interactions about solar PV systems and
have thus far appeared in our data to be quite successful in increasing PV system
adoption. Our results showing the pattern of adoption of PV systems are also relevant
to policymakers, for they underscore Bronin’s finding that split incentives are quite
important in hindering the adoption in many more populated communities in CT.
Policies reducing regulatory barriers for ‘shared solar’ or ‘community-based solar’ may
allow for greater penetration of PV systems in more densely populated and less wealthy

communities.
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