

IPL Local Green Power Advisory Committee

Meeting #1

January 8, 2016

Welcome & Introductions

What we will cover today

- **Advisory Committee objectives**
- IPL renewables experience
- Initial Local Green Power (LGP) program ideas
- Describe solar as a Local Green Power option
- Local and national trends in shared solar programs
- Other Indiana initiatives
- Program design factors
- Roundtable discussion
- Next steps

Advisory Committee (AC) Objectives

- Purpose of the Advisory Committee
- Focus of each meeting

Date	IPL	Advisory Committee	
Jan 8, 2016	Provide background	Share perspectives	
	Present program options		
Feb 4, 2016	Share initial program	Share perspectives	
	design		
Mar 16, 2016	Present revised program	Provide feedback	
	design		

IPL's renewables experience

- Existing Green Power program
- Wind Power Purchase Agreements (PPAs)
- Former Renewable Energy Incentive program
- Net metering
- Renewable Energy Production (Rate REP)
- Resulting in IPL's changing generation mix

Existing Green Power Program

- Standard Contract Rider No. 21 Green Power Initiative
- Voluntary option for customers to purchase Renewable Energy Credits (RECs)
- Modest premium to retail rates (\$0.0015/kWh)
- Program dates to March 1998
- Currently about 4,400 customers
- Sales to Customers: 165 GWh annually (or slightly more than 1% of IPL Retail sales)

Wind Energy - Power Purchase Agreements (PPAs)

- IPL has two agreements in place to purchase a significant amount of wind
- Hoosier Wind Park Benton County, Indiana
 100 MW since 2009
- Lakefield Wind Park Minnesota 200 MW since 2011
- Together these wind projects provide about 5 percent of IPL's generation

Renewable Energy Incentive Program

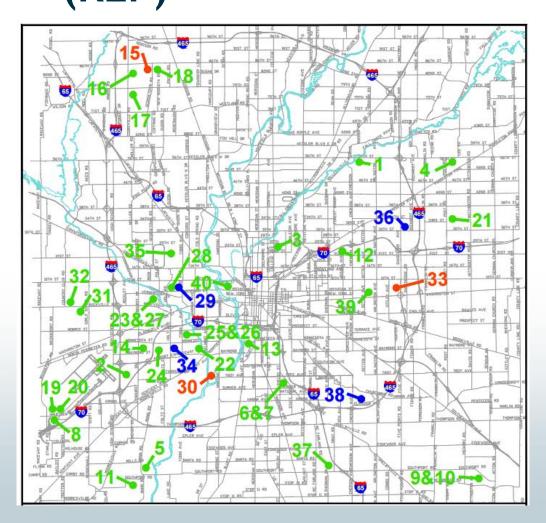
- Demand-Side Management (DSM) offering (from 2004 to 2014)
- Initially provided grants to purchase demonstration projects
- Evolved from grants to \$1 per watt credit in 2010
- IPL provided incentive payments for 57 customer owned systems from 2010 thru 2014

State Fair Demonstration Project

Under Construction - Circa 2009

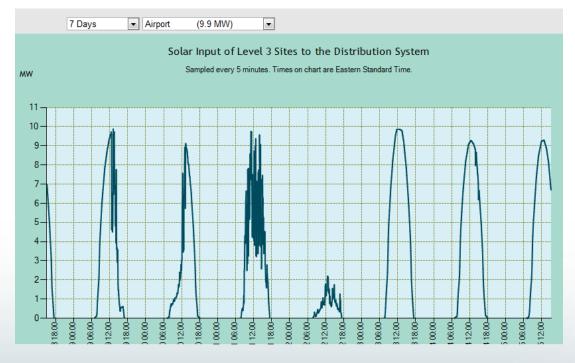
Net Metering

- Available to all IPL customers that self produce wind, hydro or solar energy - up to 1 MW in size.
- Customer bills are credited the full retail rate for all kWh displaced
- IPL currently has 79 net metered customers
 - 78 solar and one wind
 - Installed solar capacity approximately 1.45 MW
 - 21 new systems added in 2015

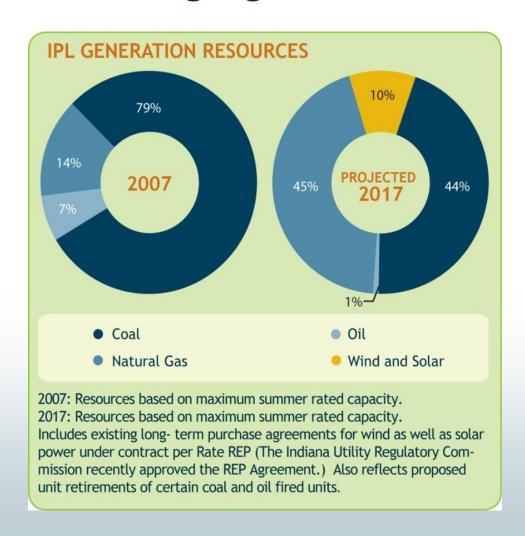

Renewable Energy Production (Rate REP)

- Fully subscribed in 2013
- 36 operating solar farms with 95 MW of solar capacity
- Indianapolis is ranked second in the amount of solar PV on a per capita basis

Rate Renewable Energy Production (REP)


Legend

Green = Operating
Red = Under Construction
Blue = In Development


Rate REP - Solar Lessons Learned

- Overall performance of ~18% of all hours vs. estimated
 15%
- IPL communicates closely with operators 24/7
- Intermittency causes voltage fluctuations
- System protection settings are site specific
- Feeder maintenance causes facilities to be taken off line

IPL's Changing Generation Mix

Why is IPL considering a LGP offering?

- Listened to public feedback during the 2014
 Integrated Resource Plan process
- Provide customers with tangible ways to participate in energy choices
- Continue to diversify our portfolio
- Foster continued leadership in industry

IPL's initial Local Green Power ideas

- Local renewable resource
- Voluntary offering for all customers
- Self-sustaining subscription-based
- IPL owned and operated competitively sourced
- 1 MW blocks (7 to 10 acres per MW)
- Customer transaction based on energy produced
- May include "anchor" corporate subscribers

Potential local renewable resource options

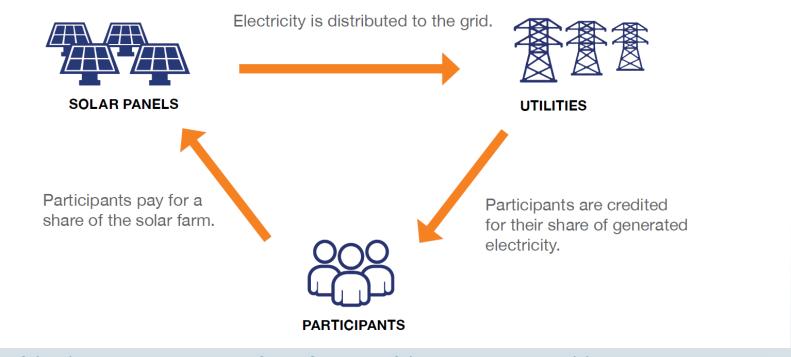
Resource	\$/kW to build	Benefits	Limitations
Solar ₁	\$3,000	Visually appealing	Land requirement
Wind ₂	\$2,213	Low cost per kWh	Limited local resource
Biomass ₃	\$4,114	Consumption of waste fuel	Limited fuel availability

Source: IPL generated from IRP

₂Source: State Utility Forecasting Group, 2014 Indiana Renewable Energy Resources Study,

does not include transmission costs

3Source: State Utility Forecasting Group, 2014 Indiana Renewable Energy Resources Study



Why is solar a good option for Local Green Power?

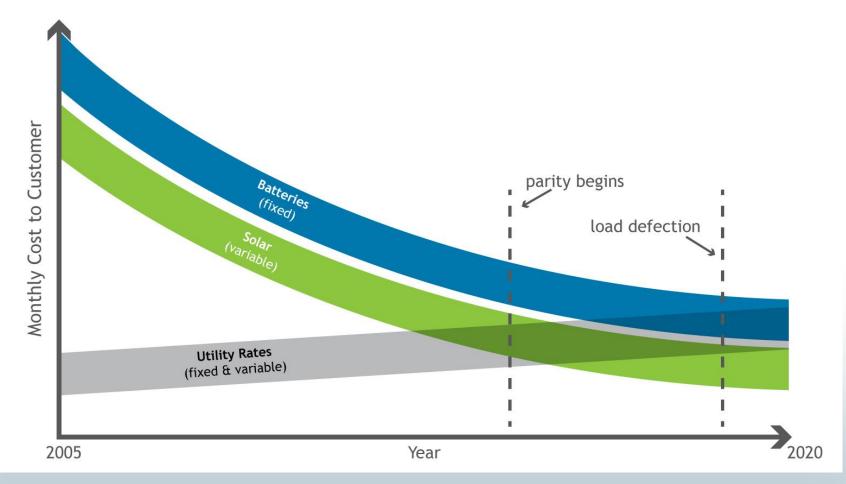
- Solar is modular and flexible
- Solar is most suitable renewable resource for Indianapolis
- Solar is most easily sited in an urban area
- Solar provides high visibility improving marketability

Shared solar simply stated

Source: Solar Electric Power Association (SEPA), Community Solar Program Design Models

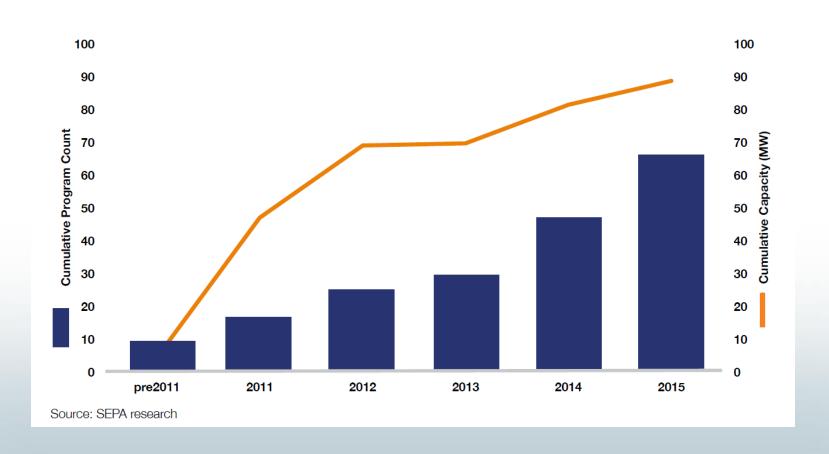
Solar LGP provides significant benefits

Customer Benefits


- Additional customer choice
- Overcomes barrier that many homes are not conducive for rooftop PV
- All customers, not just homeowners, may participate
- Lower capital cost than dispersed small scale renewables (i.e. rooftop)
- Solar production is optimized

Utility Benefits

- Proactive approach to market disruptions
- Positive customer and community engagement
- Control power quality
- Potential to mitigate impact of future CO₂ regulations
- Eases grid integration


Alternative energy solutions are causing market disruptions

Source: Global Trends in Renewable Energy Investments 2015, BNEF Distributed Generation defined as < 1MW

Nationally, there is a steady increase in shared solar programs

Other Initiatives in Indiana - Public Utilities

- Indiana Municipal Power Agency (IMPA)
 - Six solar projects totaling 10 MW
 - Plans to build a solar project in all 60 communities
 IMPA serves
- Hoosier Energy
 - Hoosier has a variety of renewable resource
 - Ten 1 MW solar projects are planned by the end of 2016
- Tipmont REMC
 - Installment plan charging \$3 per Watt (purchase model)

Other Initiatives in Indiana - Investor Owned Utilities

Duke

• Utilizing their existing GoGreen Program to purchase RECs from the 4 PPAs (25MW total, 5MW each) on behalf of the program

1&M - Clean Energy Solar Pilot Project (CESPP)

- Solar Power Rider (SPR) to recover program costs
- SRECs: customer retires them, I&M also reserves the right to comply with future mandates
- Building at substations

NIPSCO - Feed-In Tariff Program

- Phase I Ended in March 2015
- Phase II Currently Enrolling

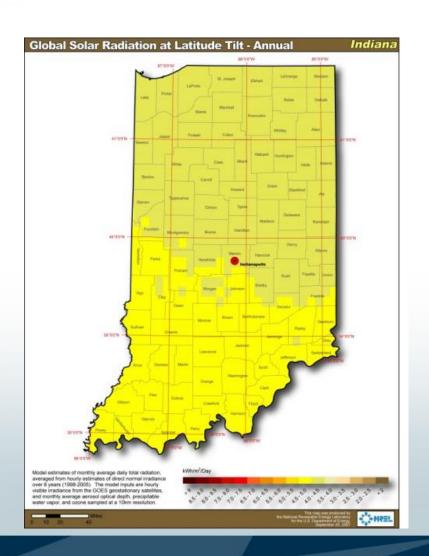
Program design factors

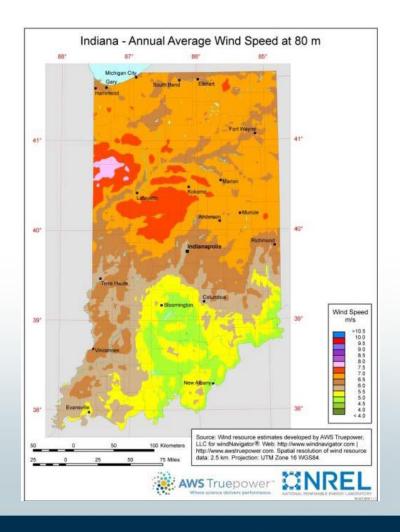
- Facility ownership & operation
- Customer Offer
 - Upfront payments (\$/watt)
 - Ongoing payment (\$/kWh)
- Subscription Transfer
- Participation limit (capacity & usage)
- Siting and Scale
- Program Length
- Minimum Term

See SEPA report: Community Solar: Program Design Models

Roundtable Discussion

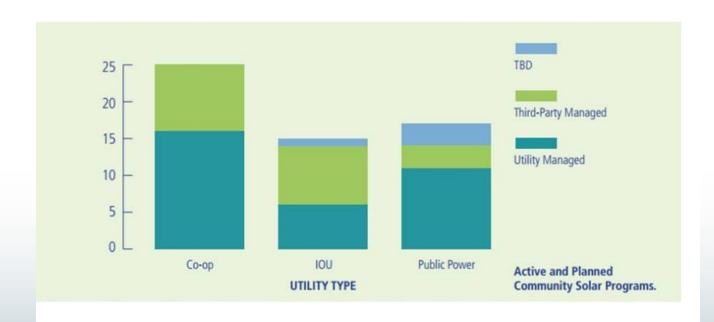
Next Steps


- IPL prepare strawman and initial design(s) for the next meeting
- IPL will continue to develop market research framework to determine customer interest
- Other ideas?


Next Meeting February 4, 2016

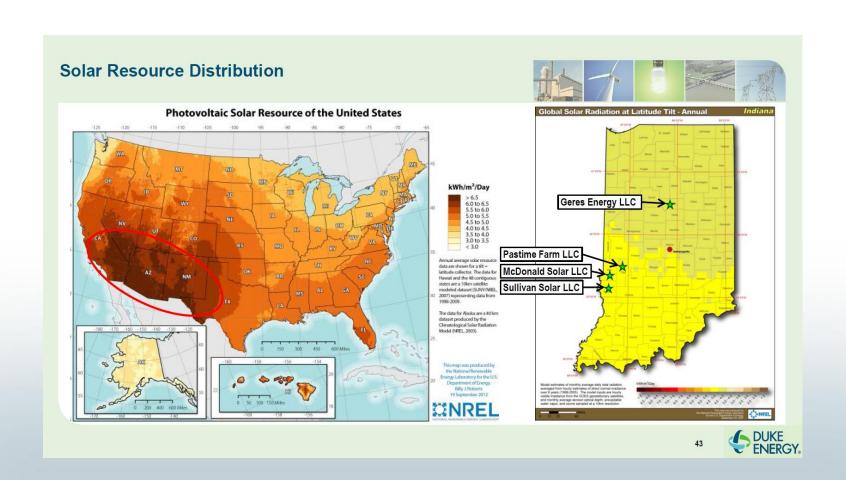
Appendix

Solar and wind resources vary in IN



Community solar programs ownership differs based on the utility type

Utility Role in Shared Solar Varies



Source: Campbell et al. (2014). Expanding Solar Access Through Utility-led Community Solar: Participation and Design Trends from Leading U.S. Programs

NATIONAL RENEWABLE ENERGY LABORATORY

Duke IRP Solar Slide (from June 2015)

I&M IRP Solar Update Slide (from May 2015)

I&M Solar Pilot Project

Program highlights:

- A significant amount of new Solar Generation has been added to various AEP operating company IRPs beginning the next decade, including I&M
- I&M began planning and regulatory activities associated with the ~ 16 MW Clean Energy Solar Pilot Project in 2014 to gain experience ahead of next decade's ramp-up in solar activity
- · Regulatory case filed with Indiana Commission
 - Initial filing on 7/7/2014
 - Order from IURC authorizing costs approved on 2/4/2015
 - · Cost recovery via a "Solar Power Rider"
 - Voluntary "Green Power Rider" wherein customers could seek more renewables
- Pilot Project consists of four (4) facilities (2.5 5.0 MW ea.) on I&M owned sites adjacent to I&M substations Additional ~ 1 MW distribution level solar facility may be added
- Interconnection applications for 4 sites filed with PJM on 4/29/2014
- Total cost is expected to be ~ \$38 M
- · Expected On-Line Dates
 - · 2 Projects (Q4-2015)
 - · 2 Projects (Q4-2016)

Benefits

- · Experience to be gained in critical areas
 - · Day-ahead forecasting
 - Operations
 - Development and Construction
 - Technology
- · Social / Economic Benefits

41

IPL Local Green Power Advisory Committee

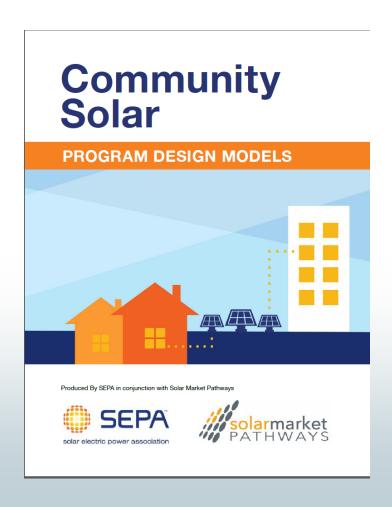
Meeting #2

February 5, 2016

Welcome & Safety Message

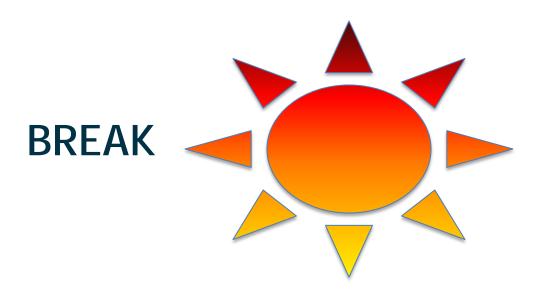
What we will cover today

- Recap of 1st meeting
- SEPA Community Solar: Program Design Models Report Discussion
- Key Success Factors
- Break
- Design Factor Survey Results
- IPL Strawman Proposal
- Site Selection Draft Criteria
- Potential Grant Opportunities
- Economic Analysis Framework
- Expectations for Next Meeting
- Closing Comments



Recap of 1st Meeting

SEPA Community Solar: Program Design Models Report Discussion



Key Success Factors

- Size of projects
- Electricity generated
- Number of local projects
- Subscribers
- Indy's national solar ranking
- Reduction in pollutants
- Customer Satisfaction

- Environmental and economic justice
- Displacement of coal
- CPP
- Financial
- Jobs
- Where projects are located

Design Factors, IPL Strawman & Survey Results

Design Factors	IPL Strawman
Facility Ownership & Operation	IPL owned and operated
Customer Offer	Fixed kWh block or customer choice
Subscription Transfers	IPL managed, prorated for the rest of the minimum term, unless waitlist can pick it up
Participation Limits	100% of average usage, to allow for more broad participation for the first offering, if not fully subscribed then future offering could allow for future blocks for customers
Siting & Scale	RFP Criteria
Program Length	Based on the asset life, for example: 25 years
Minimum Term	24 months

Discussion of survey results (see handout)

Site Selection Draft Criteria

- Cost to Construct with grid interconnection
- Feasible to interconnect (not on circuit with large Rate REP facility already)
- Brownfield reuse benefits
- Community Visibility
- Anchor sponsorship
 - e.g. non-profit, corporation, public funding
- Levelized cost per kWh

Potential for Grant Opportunities

- Solar Electric Power Association (SEPA)
 - Grants for technical assistance to 8 Utilities for Program Design
 - Research request made to SEPA staff to identify other potential opportunities
- Other Grant Opportunities?

Economic Analysis Framework

Factors to calculate net costs & benefits include the following:

- RFP results for project costs
- 25 year asset life
- Financial metrics
- Credit for avoided generation expense based on 2014 IRP forecast
- Value of renewable attributes such as Solar Renewable Energy Credits (SRECs) or carbon
- Forecasted utility solar costs to determine likely break-even/grid parity
- Compare to rooftop solar forecasted costs

Expectations for Next Meeting

Discussion

Next Meeting: Wednesday, March 16

IPL Local Green Power Advisory Committee

Meeting #3

March 18, 2016

Welcome & Safety Message

What we will cover today

- Recap of 2nd meeting
- IPL Local Green Power Project Illustrative Solar Economic Analysis
- Findings
- Break
- Discussion
- Next Steps
- Closing Remarks

Recap of 2nd Meeting

Grocers Supply Roof, 1MW rooftop system.

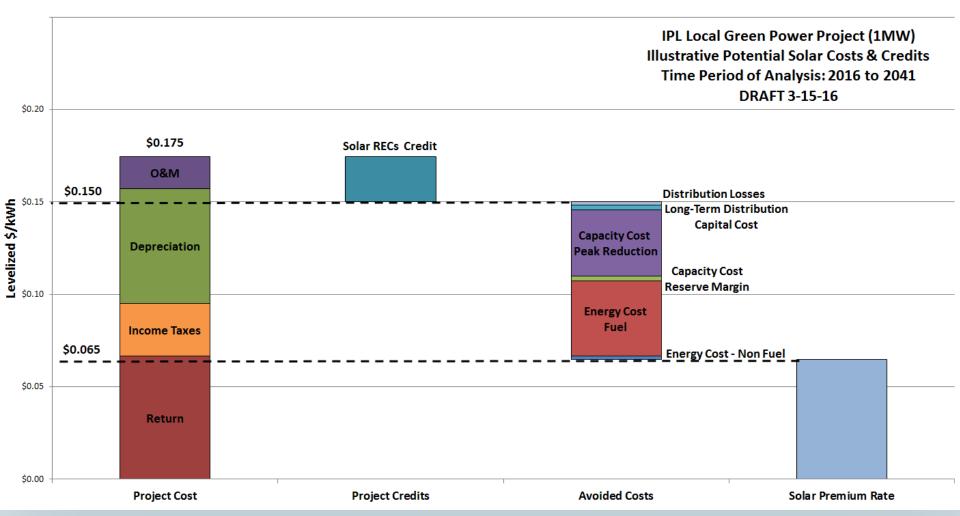
IPL Local Green Power Project Illustrative Solar Economic Analysis

^{*}This analysis represents a snapshot in time and is for discussion purposes ONLY and is not intended for a regulatory filing.

Assumptions and Data Sources

Item		Unit	Source
Size of Solar PV System	1 MW		IPL Assumption
Capacity Factor	18%		IPL's Rate REP experience
Capital Cost of Solar	\$2.93	\$/W - AC	2015 SunShot-National Renewable Energy Laboratory (NREL) Solar Report, Photovoltaic System Pricing Trends, normalized and converted from DC to AC
Useful Life (Depreciation)	25 years		http://www.nrel.gov/analysis/tech_footprint.html
Development Capital Costs	15%		NREL report, U.S. Photovoltaic Prices and Cost Breakdowns: Q1 2015 Benchmarks for Residential, Commercial and Utility-Scale Systems, p. 39
Federal Tax Credit	30%		Reflected as a credit to the intial project cost; research and analysis continue on IPL's ability to take advantage of the ITC. 30% through 2019 http://energy.gov/savings/residential-renewable-energy-tax-credit
IPL WACC & PV Discount Rate	6.91%		From IPL Rate Case Cause 44576 using a 10.93% Requested ROE
Annual O&M	\$ 0.02	per watt	http://www.nrel.gov/analysis/tech cost om dg.html
O&M Escalation	2.46%		Averaged 20YR and 30YR Daily Treasury Yield Curve Rates
			https://www.treasury.gov/resource-center/data-chart-center/interest-
			rates/Pages/TextView.aspx?data=yield
Degradation	0.50%	per year	NREL report, Photovoltaic Degradation Rates - An Analytical Review, listed in abstract
Avoided Energy Cost (Fuel)	\$ 0.032	\$/kWh	Fuel cost based on Cost of Service Study (COSS) from IPL Rate Case Cause 44576
Avoided Energy Cost (Non-Fuel)	\$ 0.002	\$/kWh	Non fuel, variable O&M cost based on Cost of Service Study (COSS) from IPL Rate Case Cause 44576
Avoided Capacity Cost (Reserve Margin)	7%		Avoided Planning Reserve Margin Requirement (PRMR)
Avoided Capacity Cost	Ranging from ~\$0.50 in 2016 to ~\$113 in 2021	\$/kW-yr	Curve is based on IPL's bilateral transactions in the short term plus Capacity Prices from ABB Fall 2015 Reference Case
Avoided Capacity Credit (Peak Reduction)	47%		% reduction at forecasted peak based on Rate REP Solar experience
Avoided Long-Term Distribution Capital Costs	\$ 0.001	\$/kWh	Reflects % of IPL circuits that may require upgrades based on the avoided cost of a new distribution circuit and % of peak reduction
Avoided T&D Losses	1.8%		Estimated from recent line loss study
Solar RECs Credit	\$21 in 2016	\$/MWh	Forward Price Forecast from ACES Power Marketing group

Illustrative Local Green Power Model - Inputs

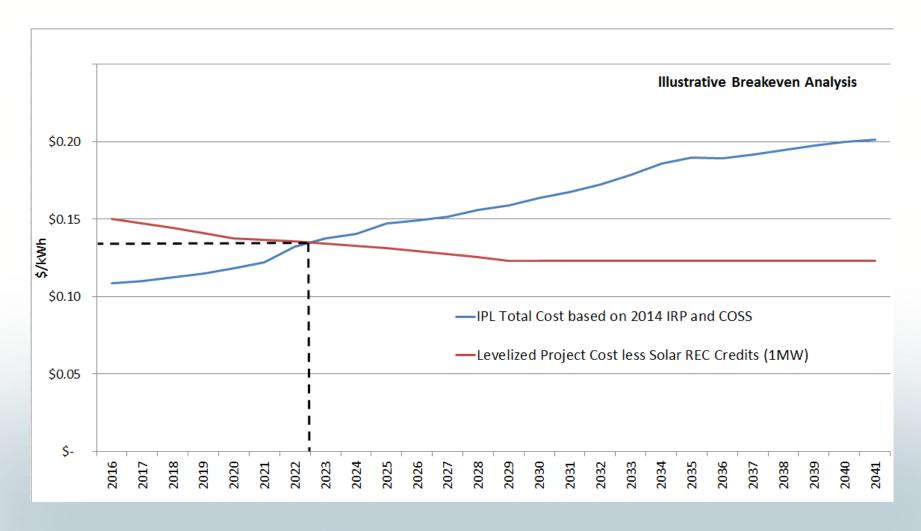

			Capacit	y Factor						
Annual Hours of Solar		1,577		18%						
Description of College DV Courts are		2.02	ć / u	4.6						
Base Cost of Solar PV System	\$		\$/watt							
Development Cost of Solar PV System	\$	0.29		15%						
Total Cost of Solar PV System	\$	3.22	\$/watt	AC						
Size of Solar PV System		1,000	kw							
Total Cost of Solar PV System	\$	3,223,000								
Federal Tax Credit	\$	(966,900)		30%						
Net Cost of Solar PV System	\$	2,256,100								
IPL WACC (Weighted Average Cost of Capital)		6.91%								
Revenue Coversion Factor (Return on)		1.43067								
Revenue Coversion Factor (Recovery of)		1.02043								
Annual Depreciation	\$	90,244		25 v	ears					
Annual O&M	\$	20,000	Ś	0.02 p		ntt				
	•	,,,,,,,,	•							
O&M Escalation		2.5%								
Solar Production Degradation		0.5%								
Avoided Line Losses		1.8%								
		2016	2	2017		2018		2039	2040	2041
Solar Production (kWh)	-	1,576,800	:	1,568,916		1,561,071		1,405,101	1,398,075	1,391,085
Investment Balance	\$	2,256,100	\$ 2	2,165,856	\$	2,075,612	\$	180,488	\$ 90,244	\$ 0

Illustrative Local Green Power Model - Results

		2016		2017	2018		2039		2040		2041
Solar Production (kWh)		1,576,800		1,568,916	1,561,071		1,405,101		1,398,075		1,391,085
Investment Balance	\$	2,256,100	\$	2,165,856	\$ 2,075,612	\$	180,488	\$	90,244	\$	0
Project Cost											
Return	\$	223,036	\$	214,115	\$ 205,194	\$	17,843	\$	8,921	\$	0
Recovery Depreciation	\$	92,088	\$	92,088	\$ 92,088	\$	92,088	\$	92,088	\$	92,088
Recovery O&M	\$	20,409	\$	20,911	\$ 21,425	\$	35,691	\$	36,569	\$	37,469
Total Project Cost	\$	335,533	\$	327,113	\$ 318,706	\$	145,622	\$	137,579	\$	129,557
Levelized Rate (\$/kWh)		\$0.175									
Project Credits											
Solar RECs Credit (\$/kWh)	\$	0.021	\$	0.021	\$ 0.021	\$	0.031	\$	0.032	\$	0.032
Solar RECs Credit	\$	(33,113)	\$	(33,214)	\$ (33,469)	\$	(43,839)	\$	(44,431)	\$	(45,029)
Levelized Rate (\$/kWh)		(\$0.025)									
Total Project Cost less Project Credits	Ś	302,420	\$	293,899	\$ 285,237	\$	101,783	\$	93,148	\$	84,527
Levelized Rate (\$/kWh)	Í	\$0.150	•	,	,		,	•	,	•	- /-
Avoided Costs		_									
Avoided Energy Cost - Fuel (\$/kWh)	\$	0.0315	\$	0.032	\$ 0.033	\$	0.051	\$	0.051	\$	0.052
Avoided Energy Cost - Fuel	\$	(49,669)	\$	(50,380)	\$ (51,724)	\$	(71,877)	\$	(71,945)	\$	(72,013)
Avoided Energy Cost - Non-Fuel (\$/kWh)	\$	0.0015	\$	0.002	\$ 0.002	\$	0.002	\$	0.002	\$	0.002
Avoided Energy Cost - Non-Fuel	\$	(2,365)	\$	(2,399)	\$ (2,463)	\$	(3,423)	\$	(3,426)	\$	(3,429)
Avoided Long-Term Dist Capital Costs (\$/kWh)	\$	0.002	\$	0.002	\$ 0.002	\$	0.004	\$	0.004	\$	0.004
Avoided Long-Term Dist Capital Costs	\$	(3,429)	\$	(3,496)	\$ (3,564)	\$	(5,344)	\$	(5,448)	\$	(5,554)
Avoided Cap Cost - Reserve Margin (\$/kWh)											
Avoided Cap Cost - Reserve Margin											
Avoided Cap Cost - Peak Reduction (\$/kWh)											
Avoided Cap Cost - Peak Reduction											
Avoided T&D Losses (\$/kWh)	\$	0.001	-	0.001	\$ 0.001	\$	0.002	\$	0.002		0.002
Avoided T&D Losses	\$	(1,134)		(1,294)	(1,681)	\$	(3,046)		(3,104)		(3,149)
Total Avoided Cost to Solar Customers	\$	(64,141)	\$	(73,199)	\$ (95,098)	\$	(172,254)	\$	(175,526)	\$	(178,073)
Levelized Rate (\$/kWh)		(\$0.085)									
Net Charge to Customer	\$	238,279	\$	220,700	\$ 190,139	\$	(70,471)	\$	(82,378)	\$	(93,546)
Levelized Premium Solar Rate (\$/kWh)		\$0.065									
Dist=Distribution											
Cap=Capacity											
Cap cost is proprietary, and therefore is redacted.											i

Components of the Costs and Credits

Solar Economic Analysis -Levelized Cost of Production


Solar System Size	Capital cost (\$/watt - AC)	Levelized Cost – Before Credits (\$/kWh)
1 MW	\$2.93	\$0.175
5 MW	\$2.27	\$0.139
4 kW – Customer Build 4% Cost of Capital	\$3.50	\$0.157
4 kW – Customer Build 10% Cost of Capital	\$3.50	\$0.238

Source:

2015 SunShot-National Renewable Energy Laboratory (NREL) Solar Report, Photovoltaic System Pricing Trends

A decrease in solar capital costs would improve the value to the customer

Findings

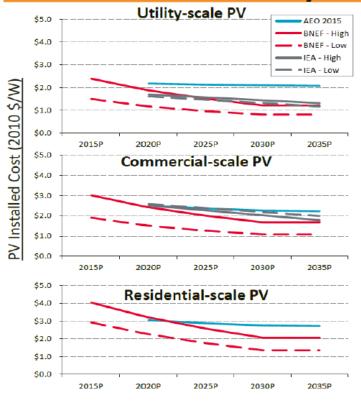
- Solar resources remain more expensive than current IPL retail rates
- A larger site produces economies of scale, however, subscription risk is greater
- As capital costs for solar decrease, the economic case for solar improves
- Cost of carbon will impact future levelized costs

Break

Discussion

Next Steps

- Consider the following questions:
 - Does it make sense to do this now?
 - If not, when will it make sense?
 - How large of an economic gap will altruism cover?
 - How do we address the gap between the asset life (25) years) and the customer subscription commitment (1 year)?
 - Besides economics what are other drivers for customers. to choose solar?
- Incorporate economic analysis into 2016 IRP



Closing Remarks

Appendix A - Cost of Solar

Range of Analyst Expectations of Long-term U.S. System Price

- BNEF and IEA expect pricing in all PV markets to continue to decrease and to get very close to the SunShot targets between 2020-2030
- AEO has a much more conservative outlook with respect to PV system pricing, with system pricing projected to remain relatively flat through 2035
- Analyst expectations of future pricing are currently far lower than projections made even just a few years ago, reflecting very rapid change in the U.S. market.

Sources: International Energy Agency, "World Energy Outlook 2014," November 2014 (New Policy & 450 Scenarios for utility-scale & commercial-scale); Bloomberg New Energy Finance, "H1 2015 North American PV Outlook" (01/16/15); U.S. Energy Information Administration, Annual Energy Outlook 2015 (June 2015). In years where projection was not made, most recent projection used.

31

energy.gov/sunshot

Appendix B - Minnesota Ex.

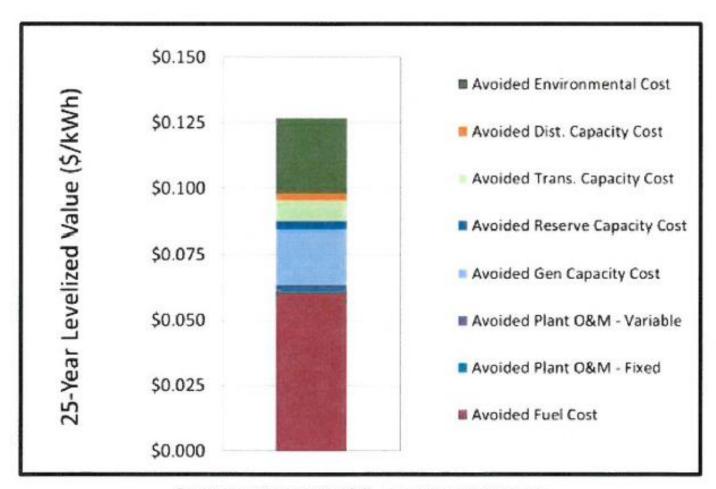
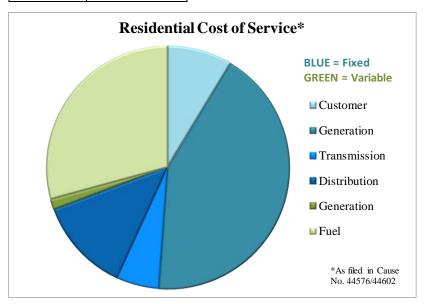
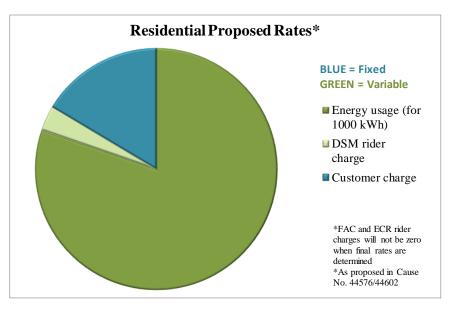


Figure 2. Minnesota VOS – sample calculations

Source: MN DOC (2014)

Appendix C - IPL Rates 101




IPL Rates 101 DRAFT 3-15-16

Local Green Power Project - Supplementary Material

	Residential Cost of Service
	% of Total
Customer	9%
Generation	43%
Transmission	6%
Distribution	12%
Generation	1%
Fuel	29%
Total	100%

	Residential Proposed Rate
Energy use (first 500 kWh)	\$0.0936
Energy use (next 500 kWh)	\$0.0727
Energy usage (for 1000 kWh)	\$83.13
DSM rider charge	\$3.48
Customer charge	\$17.00
Total	\$103.61

This illustrates how IPL's costs are largely fixed costs, while customers' bills are based mostly on their variable usage.

2017 IPL Local Green Power Advisory Committee (LGP AC)

Meeting #1

March 3, 2017

Welcome & Safety Message

Ice Breaker

Meeting Agenda

- Introductions / Expectations
- Review of 2016 LGP AC Activities
- Updated Solar Economic Analysis
- Break
- SEPA Technical Assistance Customer Market Research
- Discussion
- Preview of Next Meeting & Next Steps

Introductions/Expectations

- Name
- Organization
- What do you hope to gain from this group?
- Group expectations

Review of 2016 LGP activities

Why is IPL considering a LGP/Community Solar offering?

- Respond in a meaningful way to feedback during the 2014 and 2016 Integrated Resource Plan (IRP) processes
- Provide customers with tangible ways to participate in energy choices
- Continue to diversify our portfolio
- Foster continued leadership in industry

IPL's initial LGP ideas

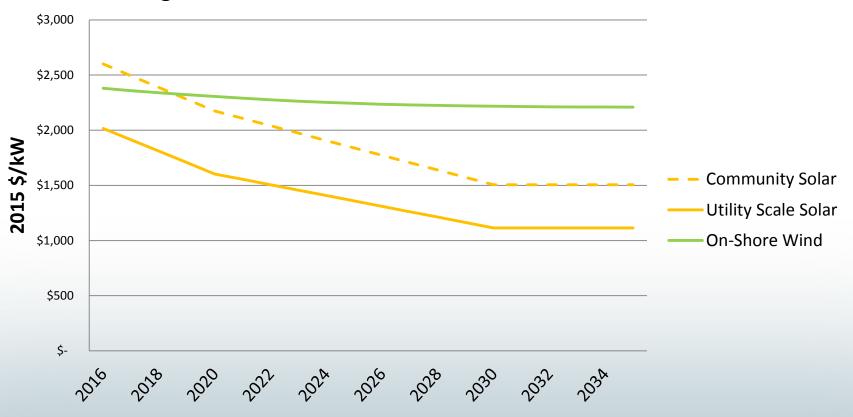
- Local renewable resource
- Voluntary offering for all customers
- Self-sustaining subscription-based
- IPL owned and operated competitively sourced
- 1 MW blocks (7 to 10 acres per MW)
- Customer transaction based on energy produced
- May include "anchor" corporate subscribers

Review of 2016 LGP AC Meetings

- Focused on education of renewable costs, benefits, challenges led to solar as likely option
- Established Key Performance Indicators (KPI)
- Stakeholders ranked top 5 KPIs:
 - Financial cost of project
 - Access & equity affordable for all customers
 - Displacement of fossil fuels/ emission reductions
 - Number of subscribers
 - Customer satisfaction
- Costs were prohibitive to move forward

Additional research has been revealing

- IPL regularly reviews renewable energy penetration reports, cost forecasts and other community solar programs (e.g. See last page of Appendix)
- Engaged in discussions with other AES entities
- Costs have declined aggressively in 2016
- SEPA announced technical assistance
- Costs look much more favorable



Updated Solar Economic Analysis

Renewable costs are declining

Overnight Construction Costs Modeled for IPL 2016 IRP Base Case

Source: 2016 IPL IRP, Figure 5.16, pg. 80

Solar capital costs have declined

Modeling Vintage**	Capital Cost for >1MW (\$/W AC)	Levelized Premium Solar Rate (\$/kWh) – retiring the RECs	Levelized Premium Solar Rate (\$/kWh) – monetizing the RECs
March 2016	\$2.93 ¹	\$0.095	\$0.065
February 2017	\$1.91 ²	\$0.035	\$0.001

^{**}The analysis presented in this table is a snapshot in time and is for discussion purposes ONLY and not intended for a regulatory filing.

¹ Solar capital cost source: 2015 SunShot National Renewable Energy Laboratory (NREL) Solar Report, Photovoltaic pricing trends

² Solar capital cost source: NREL Annual Technology Baseline for 2016, http://www.nrel.gov/analysis/data_tech_baseline.html

Cost analysis entails multiple elements

- Inputs include:
 - Capital costs
 - Useful life
 - Annual O&M
 - Federal tax credit
 - Capacity factor
 - Avoided costs: energy (fuel and nonfuel), capacity costs, distribution costs, T&D losses
- Preliminary 2017 analysis updated the capital costs
- Detailed analysis will be discussed at the next meeting

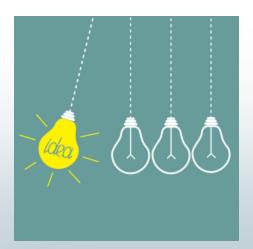
Break

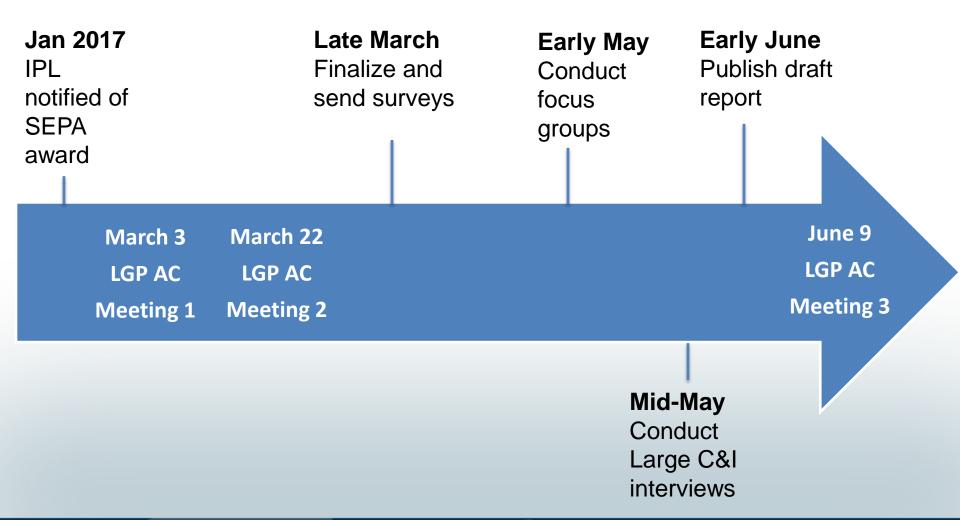
SEPA Technical Assistance for Market Research

- IPL successfully secured \$20,000 of Community Solar Technical Assistance funding from SEPA* to support market research
- The US Department of Energy provides the funds to SEPA to administer
- SEPA will support:
 - Customer surveys for residential customers and small Commercial & Industrial (C&I) customers
 - Three focus groups:
 - Residential customers who rent their homes
 - Residential homeowners
 - Small C&I customers

*Smart Electric Power Alliance

IPL seeks to understand...


- Would IPL customers support a community solar program?
- What program terms appeal to customers?
- How do customers want us to treat the Renewable Energy Certificates (RECs)?
- Does the visibility or geographic location of the project matter to customers?
- What price premium compared to base rates will customers tolerate?


IPL plans to expand market research

- Re-engage stakeholders in this LGP AC forum
- Include large commercial & industrial customer interviews
- Combine results in final report
- Share results

Key milestones

Discussion

Survey Review

Objective: high-level feedback on the proposed market research survey

- Stoplight Exercise
 - What works about the survey in its current state?
 - What doesn't work?
 - What's missing?
- Residential
- Small Commercial

Preview of Next Meeting

- 2017 LGP AC Meeting #2: Wednesday, March 22
 - Review draft survey feedback
 - Review potential large C&I customers to interview
 - Present detailed solar economic analysis
 - Discuss focus groups script, schedule, etc.
 - Review KPIs
 - Other items?

Next Steps

- LGP AC members provide feedback by March 10
- IPL provide additional materials by March 15
- LGP AC Meeting 2 scheduled for March 22
- Finalize surveys to send by email ~March 28
- Receive survey responses ~April 14
- Coordinate focus group meeting details (expected to be held in May)
- Establish Large C&I interview schedule

Thanks for participating!

Feel free to contact IPL with any questions or follow up items before the next 2017 LGP AC Meeting.

Appendix

Solar LGP provides significant benefits

Customer Benefits

- Additional customer choice
- Overcomes barrier that many homes are not conducive for rooftop PV
- All customers, not just homeowners, may participate
- Lower capital cost than dispersed small scale renewables (i.e. rooftop)
- Solar production is optimized

Utility Benefits

- Proactive approach to market disruptions
- Positive customer and community engagement
- Control power quality
- Potential to mitigate impact of future CO₂ regulations
- Eases grid integration

Community Solar Examples

Program Term	Ameren Missouri	Madison Gas and Electric	Rocky Mountain Power - Utah
System Size	Two 500 kW arrays	500 kW	20 MW
Customer Offer	Blocks of 100 kWh	Blocks of 250 watts, up to 3 kW	Blocks of 1kW, estimated to produce 200 kWh
Customer Participation Limit	50% of their average usage	50% of average usage	up to 100%
Program Length	25 years	25 years	20 years
Required subscription length	2 years	none	3 years
Subscription Transfer	Customers on the waiting list will take the open spot	customers on the waiting list will take the open spot for the first 3 years	Customers on the waiting list will take the open spot
Start-up fee	\$25/100 kWh, nonrefundable	\$47.25/250 W, nonrefundable	None
Cancellation Fee	None	None	\$50 / 250 W block
Rate per kWh	TBD - early drafts suggested a total of \$0.16/kWh for residential and \$0.15/kWh for small businesses	\$0.12/kWh, plus a reduced transmission charge of \$0.008.	\$0.117 for residential, and \$0.01 for small businesses.
Eligible Customers	Residential and small business	Residential	Residential, small businesses, and large C&I

2017 IPL Local Green Power Advisory Committee (LGP AC)

Meeting #2

March 24, 2017

Welcome & Safety Message

Ice Breaker

Meeting Agenda

- Customer market research
 - Surveys
 - Focus Groups
 - Large C&I Customer Interviews
- Break
- Detailed 2017 solar economic analysis
- Discussion
- Next Steps

Customer Market Research: Surveys

Survey feedback

Response to your feedback:

- Reorganized questions so that the educational questions come first
- Eliminated battery storage question
- Eliminated trigger words

Today's Goal:

Final review and discussion

Survey Methodology

- Web-based survey via Survey Monkey engine
- 109,923 Residential & 2,867 Small
 Commercial customers have opted to allow IPL to contact them via email
- Random sample generated based on IPL customer contact list
- IPL will tie NAICS codes to Small Commercial customers that volunteer the necessary information

Customer Market Research: Focus Groups

Focus Group Details

- Early May
- 3 sessions in one day, 1 hour each
- Noon, 5:30pm, 7:00pm
- 8-10 participants in each group
- 10 12 people may observe
- Video and audio recordings will be available

Focus Group Facility

Indy Focus

- 1314 N Meridian St. Indianapolis, IN 46202
- Located just north of downtown

Herron Research Associates - The Idea Center

- 6049 Lakeside Blvd.
 Indianapolis, IN 46278
- Located on the Northwest side at I-465 and 71st St.

Focus Group Script

- Incorporated LGP AC feedback on surveys into the focus group script
 - Put the education portion at the beginning
- Included questions about treatment of solar renewable energy credits (RECs)
- The script is a dynamic document that will be fine-tuned based on survey responses and feedback from SEPA's facilitator

Why have focus group sessions?

Purpose:

- To complement the quantitative survey results with qualitative research
- The focus group sessions will allow IPL to take a deeper dive into customer preferences and survey responses
- IPL may receive more accurate responses in a focus group setting

Focus Group Script Feedback - Stop Light Exercise

Customer Market Research: Large C&I Customer Interviews

Large C&I Customer Market Research

Potential interviewees include the following:

Pharmaceuticals

Manufacturers

Healthcare providers

Universities

Big Box retailers

Themes for Large C&I Interview **Questions**

How community solar can fit with the customer's sustainability goals

Visibility of a solar project

Corporate branding

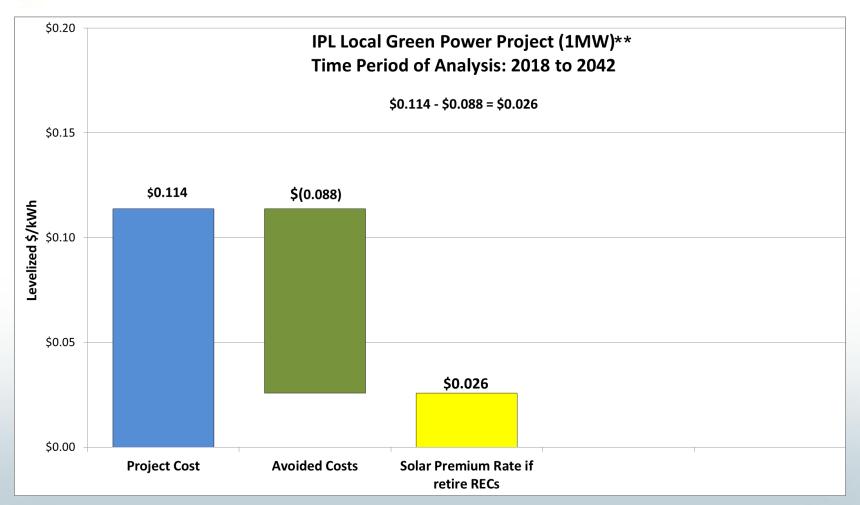
Preferred program terms and structure

Program cost

Other?

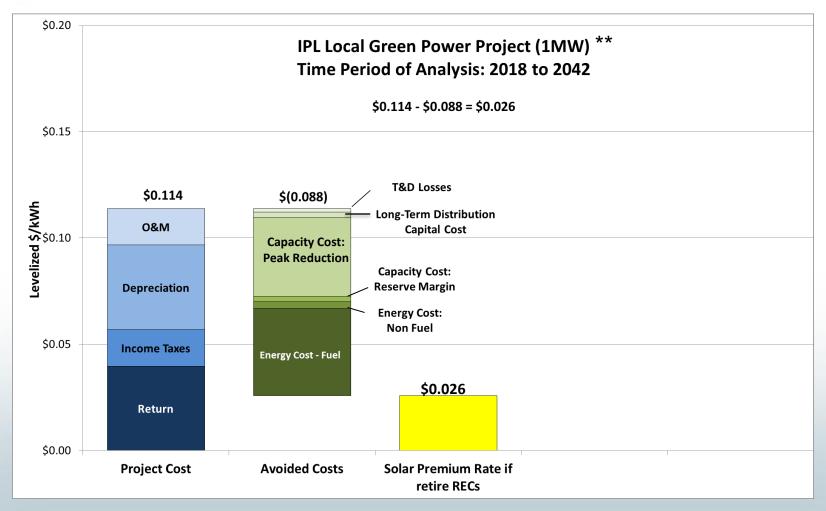
Break

Detailed Solar Economic Analysis

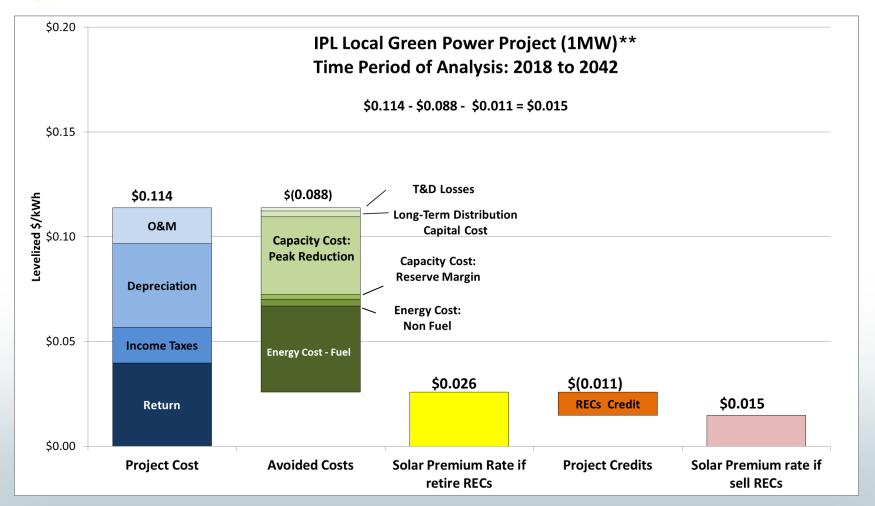

Economic Analysis Overview

- Update and gather feedback on assumptions
- Understand major drivers on local green power premium rate
- Gain a high level understanding of the model
- Determine REC price impact on the rate
- Understand the impact of a later in-service date
- Determine what is next in the economic analysis

Updated Assumptions


Annual Hours of Solar	1,577	18%	capacity factor
In-Service Date	2018		
Base Cost of Solar PV System	\$ 1.91	\$/watt AC	
Development Cost of Solar PV System	\$ 0.19	10%	
Total Cost of Solar PV System	\$ 2.10	\$/watt AC	
Size of Solar PV System	 1,000	. kw	
Total Cost of Solar PV System	\$ 2,101,000		
Federal Tax Credit	\$ (630,300)	30%	
Net Cost of Solar PV System	\$ 1,470,700		
IPL WACC (Weighted Average Cost of Capital)	6.41%		
Revenue Coversion Factor (Return on)	1.43067		
Revenue Coversion Factor (Recovery of)	1.02043		
Annual Depreciation	\$ 58,828	25	years
Annual O&M	\$ 20,000	\$ 0.02	per watt
O&M Escalation	2.5%		
Solar Production Degradation	0.5%		
Avoided Line Losses	1.8%		
*Green shaded data are inputs			

Illustrative Potential Solar Costs & Credits - 1 of 3


^{**}The analysis presented is a snapshot in time and is for discussion purposes ONLY and not intended for a regulatory filing.

Illustrative Potential Solar Costs & Credits - 2 of 3

^{**}The analysis presented is a snapshot in time and is for discussion purposes ONLY and not intended for a regulatory filing.

Illustrative Potential Solar Costs & Credits - 3 of 3

^{**}The analysis presented is a snapshot in time and is for discussion purposes ONLY and not intended for a regulatory filing.

Determining 25 year levelized Revenue Requirement**

	1	2		24		25
(2018-2042 - 25 year asset life)	2018	2019		2041		2042
Solar Production (kWh)	1,576,800	1,568,916	1	L,405,101	1	.,398,075
Investment Balance	\$ 1,470,700	\$ 1,411,872	\$	117,656	\$	58,828
Project Cost						
Return	\$ 134,872	\$ 129,477	\$	10,790	\$	5,395
Recovery Depreciation	\$ 60,030	\$ 60,030	\$	60,030	\$	60,030
Recovery O&M	\$ 20,409	\$ 20,911	\$	35,691	\$	36,569
Total Project Cost	\$ 215,310	\$ 210,418	\$	106,511	\$	101,994
Levelized Rate (\$/kWh)	\$ 0.114					
Project Credits						
Solar RECs Credit	\$ (12,812)	\$ (13,140)	\$	(24,290)	\$	(25,014)
Levelized Rate (\$/kWh)	\$ (0.011)					
Avoided Costs						
Avoided Energy Cost - Fuel	\$ (51,408)	\$ (54,633)	\$	(71,666)	\$	(71,734)
Avoided Energy Cost - Non-Fuel	\$ (3,942)	\$ (4,189)	\$	(5,495)	\$	(5,501)
Avoided Long-Term Dist Capital Costs	\$ (3,429)	\$ (3,497)	\$	(5,380)	\$	(5,486)
Avoided Cap Cost - Reserve Margin	\$ (2,306)	\$ (2,843)	\$	(5,744)	\$	(5,744)
Avoided Cap Cost - Peak Reduction	\$ (32,938)	\$ (40,613)	\$	(82,064)	\$	(82,064)
Avoided T&D Losses (\$/kWh)	\$ 0.001	\$ 0.001	\$	0.002	\$	0.002
Avoided T&D Losses	\$ (1,692)	\$ (1,904)	\$	(3,066)	\$	(3,070)
Total Avoided Cost to Solar Customers	\$ (95,715)	\$ (107,678)	\$	(173,416)	\$	(173,598)
Levelized Rate (\$/kWh)	\$ (0.088)					
Net Charge to Customer w/ monetizing RECs	\$ 106,784	\$ 89,599	\$	(91,194)	\$	(96,618)
Net Charge to Customer w/o RECs	\$ 119,595	\$ 102,739	\$	(66,905)	\$	(71,604)
Levelized Premium Solar Rate (\$/kWh) w/ monetizing RECs	\$ 0.015					
Levelized Premium Solar Rate (\$/kWh) w/o monetizing RECs	\$ 0.026					

^{**}The analysis presented is a snapshot in time and is for discussion purposes ONLY and not intended for a regulatory filing.

Solar Resource Energy Credit (RECs) Pricing

* This graph is protected by copyright laws and contains material proprietary to SRECTrade, Inc. All bid pricing and notes included are indicative and subject to change. Please contact us for most current markets. If a market is not quoted herein, please contact us directly for further information. Usage policy.

Get more data

Measurable Improvement in Premium Solar Rate

Modeling Vintage**	Capital Cost for >1MW (\$/W AC)	Levelized Premium Solar Rate (\$/kWh) – retiring the RECs	Levelized Premium Solar Rate (\$/kWh) – monetizing the RECs			
March 2016	\$2.93 ¹	\$0.095	\$0.065			
March 2017	\$1.91 ²	\$0.026	\$0.015			

^{**}The analysis presented in this table is a snapshot in time and is for discussion purposes ONLY and not intended for a regulatory filing.

¹ Solar capital cost source: 2015 SunShot National Renewable Energy Laboratory (NREL) Solar Report, Photovoltaic pricing trends

² Solar capital cost source: NREL Annual Technology Baseline for 2016, http://www.nrel.gov/analysis/data_tech_baseline.html

2018 vs 2019 Community Solar Build

Modeling Vintage**	Capital Cost for >1MW (\$/W AC) ¹	Levelized Premium Solar Rate (\$/kWh) – retiring the RECs	Levelized Premium Solar Rate (\$/kWh) – monetizing the RECs
2018 Build	\$1.91	\$0.026	\$0.015
2019 Build	\$1.71	\$0.016	\$0.005

^{**}The analysis presented in this table is a snapshot in time and is for discussion purposes ONLY and not intended for a regulatory filing.

¹Solar capital cost source: NREL Annual Technology Baseline for 2016, http://www.nrel.gov/analysis/data_tech_baseline.html

Findings & Future Economic Analysis

- Volumetric Rate Premium appears to be at an attractive level
- IPL would competitively bid project
- IPL will update assumptions in the model
- IPL will begin to model approaches consistent with the design of a program
 - Lease payment (fixed monthly)
 - Rate payment (volumetric monthly)
 - Upfront payment (initial investment)
- Tax benefit may change with a partner

Discussion

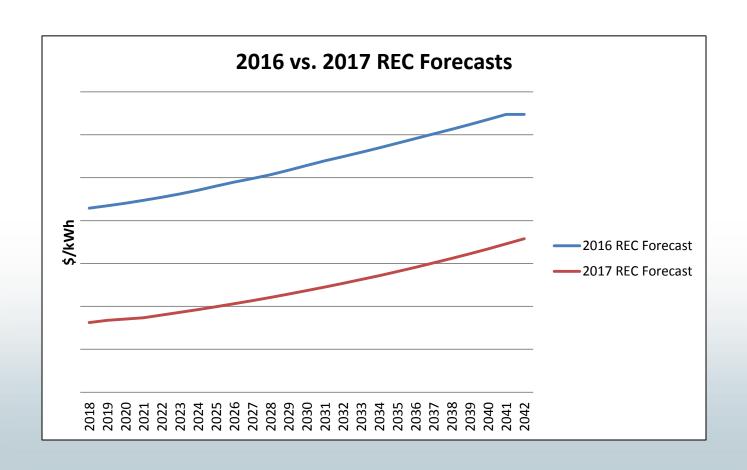
Next Steps - Timeline

Date	Research Task
March 28 th	Finalize and send surveys
April 14 th	Receive survey results
Late April	Contact potential focus group participants
May 2 nd , 3 rd or 4 th	Conduct the three (3) focus group meetings
May	Conduct Large C&I interviews
April - May	Summarize findings
June 2 nd	Publish draft report
June 9 th	LGP AC Meeting 3

Preview of Next Meeting

- 2017 LGP AC Meeting #3: Friday, June 9
 - Review draft customer market research report
 - Discuss findings, including preference for certain program design elements
 - Gather stakeholder feedback
 - Establish program goals, initial KPIs and high level implementation timeline if appropriate

Thanks for participating!


Feel free to contact IPL with any questions or follow up items before the next 2017 LGP AC Meeting.

Appendix

REC pricing comparison

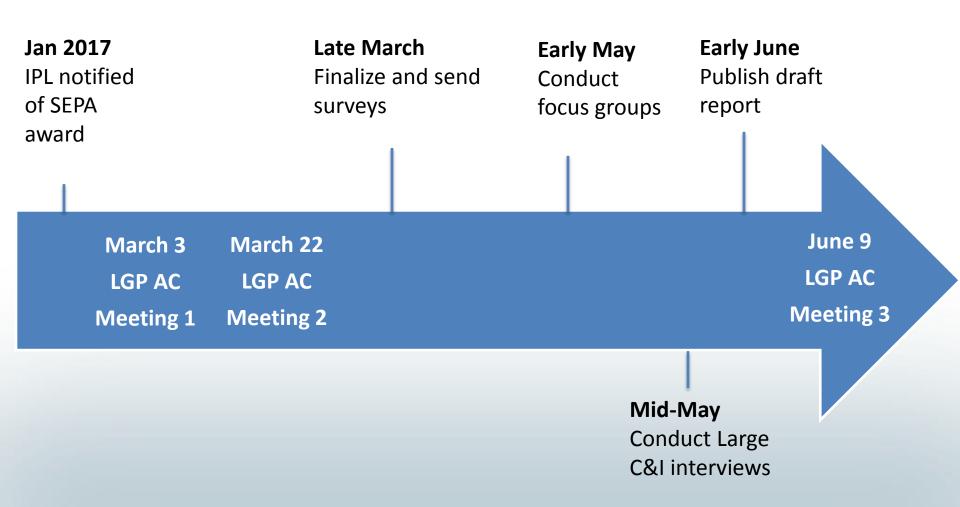
2017 IPL Local Green Power Advisory Committee (LGP AC)

Customer Market Research Results

Meeting #3

June 9, 2017

Welcome & Safety Message


Ice Breaker

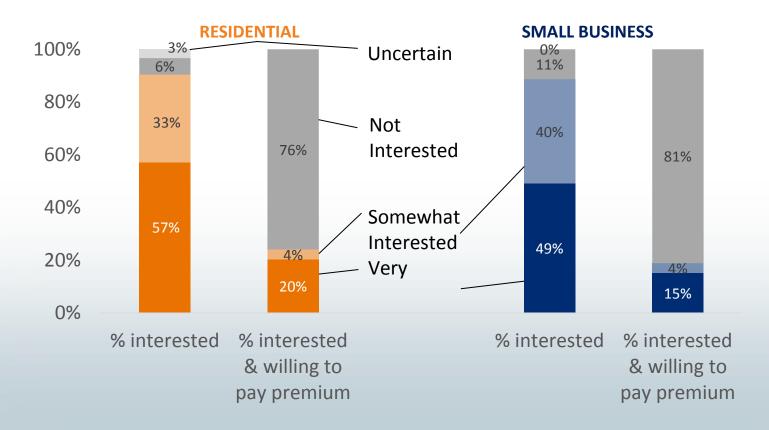
Meeting Agenda

- Recap of 2017 LGP AC Key Milestones
- Results of IPL/SEPA Customer Market Research Efforts
 - Surveys
 - Focus Groups
- Break
- Results of IPL/Smallbox Large C&I Customer Interviews
- Ideas for Consideration
- Discussion

Key milestones

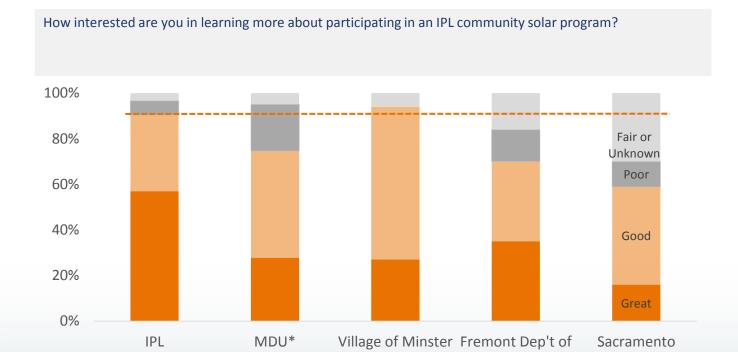
Customer Market Research Results: Surveys

Survey Results Participation


An online survey was distributed to customers via email in April 2017.

- **82,867** customers targeted by survey
- **4,318** residential customers started the survey
- **3,999** residential customers completed
- **53** small business customers started the survey
- **47** small business customers completed

Smart Electric Power Alliance


Customer Interest

How interested are you in learning more about participating in an IPL community solar program?

Smart Electric Power Alliance

Customer Interest Comparable

Somewhat

Interested

Very Interested

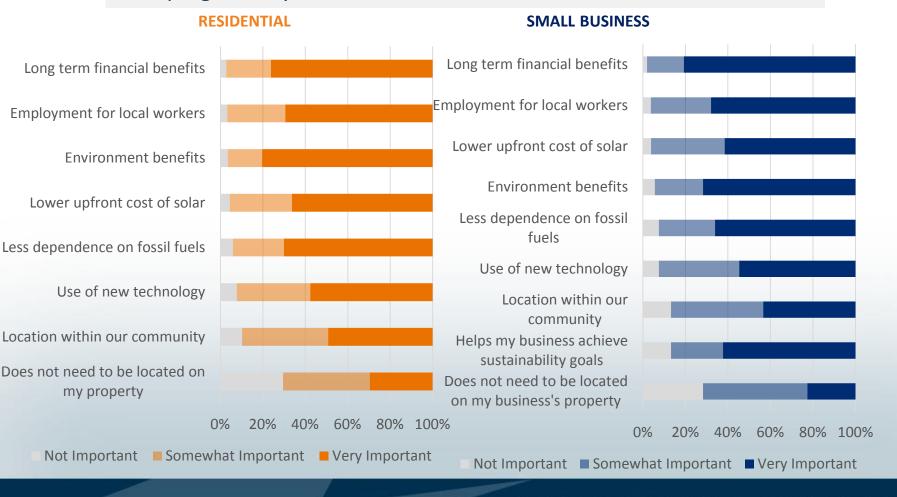
Municipal Utility
District (SMUD)**

Uncertain

Utilities

Not Interested

^{*}Montana Dakota Utilities


^{**}The SMUD survey varied by asking respondents to rate the program concept.

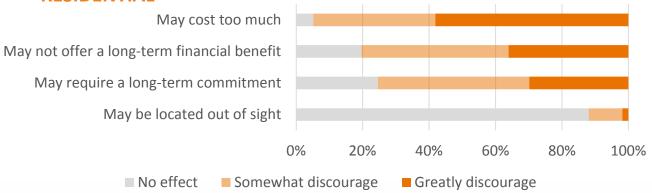
Survey Results Key Benefits

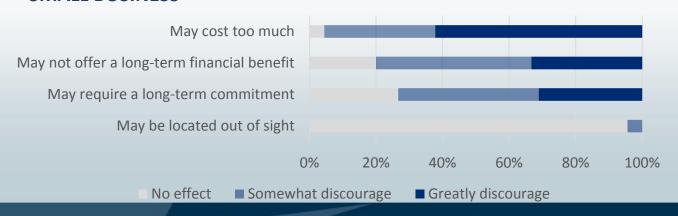
How important are the following potential benefits of the community solar program to you?

Survey ResultsSupportive Comments

Of the 464 responses providing comments, 167 were positive, 258 were neutral and 39 were negative.

Example positive comments:


- About time! / Could I say this is about time!
- Got to save that environment.
- YES PLEASE / YES! YES! YES!
- Great idea /This would be great / Great! I love it.
- We are a pro-solar family but have not opted for rooftop panels yet. this would be awesome.
- Wish I could afford my own put I'll take what I can get. IPL is moving in the right direction
- I'm all in because I'm not a dummy
- Would LOVE to be involved in a solar program!
- We'd go entirely solar if we could.



How much would each of the following potential issues discourage you from participating in an IPL community solar program?

RESIDENTIAL

SMALL BUSINESS

Customer Concerns

Below is a sample from the 39 negative comments:

General distaste

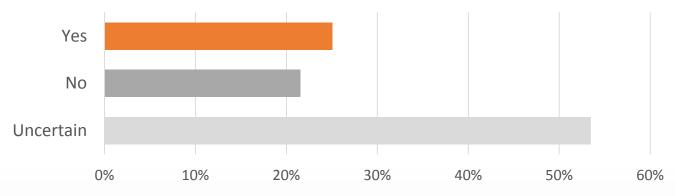
- Greed is a great motivation in corporations, even not-for-profits, until it gets in the way of creating freedom for all. This is a sophisticated plan IPL considering, but it seems it's about sharing risk and making the company look more invested in alternative energy than is truthfully is. Image is so critical when you are a utility. This feels more like a PR ploy than an actual altruistic venture.
- Continue burning Indiana coal
- I don't want to be an early adopter. / I do not adjust well to change /I'm a very busy person

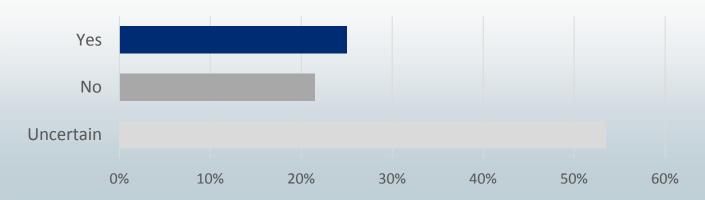
Concerns about payback

Too costly for the time being - want to move that way

Confusion about Offering

 I'm in an HOA which doesn't allow solar panels / But I rent... / I already have a solar light.




Willingness to Pay any Premium

Would you be willing to pay a premium to voluntarily participate in an IPL community solar program?

RESIDENTIAL

SMALL BUSINESS

Survey ResultsPremium Amount

Assuming your bill mirrors the average IPL residential customer bill of \$100 a month, what is the highest additional amount you would be willing to pay to power your home with solar energy?

Sample Average Bill \$115 Sample Median Bill \$100 Sample Range \$20 to \$400

SMALL BUSINESS

Sample Average Bill \$1,180 Sample Median Bill \$500 Sample Range \$50 to \$20,000

Survey Results Contract Length

.....what is the maximum length of time to which you would be willing to commit?

Customer Market Research Results: Focus Groups

IPL conducted three focus group meetings on May 3, 2017.

Group 1 – 10 Small Businesses

Group 2 – 12 Homeowners

Group 3 – 12 Renters

Key Takeaways:

- Interest in solar is primarily driven by saving money, followed at a distance by environmental concerns.
- Two to three year program terms were deal breakers for many of the participants.
- RECs were not a meaningful value to most.
- For the most part, customers were not concerned where the solar facility would be located.
- Customers were fairly split between interest in paying more and locking in a rate vs paying a bit less.

Interest in solar is primarily driven by saving money, followed at a distance by environmental concerns.

- "Whatever reduces my electric bills." business
- "Solar doesn't have any fuel costs. The price should drop over time." rental
- "I'm 72. I just don't see how I could benefit from this program? Can I pass it on to my children?" homeowner

The participants were fairly split on the impact of a potential sign up fee.

- "I'm fine with it if you want to pay my \$50 fee."
- "Sure. No problem."

Two to three year program terms were deal breakers for many of the participants.

- "This is a newish technology that's still improving. I'd be nervous that signing up for a longer term contract would hurt my ability to improved programs."
 - homeowner
- "I don't even like to sign up for cable TV contracts." homeowner
- "A year even feels a bit long for me. Can this be offered as a 6 month contract or less?" renter

Focus Group Findings Universal Comments by All Groups

RECs were not a meaningful value to most.

- "RECs seem more about bragging rights. I'm more concerned with creating real change." - homeowner
- "I do want to get some recognition for participation. I paid for it. I might as well get a sign or sticker." - business

For the most part, customers were not concerned where the solar facility would be located.

- "Wherever it is most cost effective." business
- "I like that the upkeep cost of a large rectangular facility is going to be much cheaper than having to maintain some panels on my roof, some on yours, some on yours." – business
- "If you can't see where it is, can you be really sure that you're getting solar energy?" renter

Customers were fairly split between interest in paying more and locking in a rate vs paying a bit less.

- "So there is the potential that I could one day be paying less than the rest of customers. I like this." homeowner
- "What happens if rates go down? Do I pay less?" homeowner

Overall Focus Groups Impressions

- Education would be essential to help customers understand that this would not be a service, but a community program which they are supporting.
- This would be a voluntary program not an "Uber" service.
- This program may be one of many IPL customer offerings.
- Other?

Break

Customer Market Research: Large C&I Customer Interviews

Large C&I Customer Market Research

IPL interviewed five customers with a local third party facilitator, SmallBox Consulting.

^{*}The companies above wish to remain anonymous. Please do not share their names.

Key takeaways

- Most customers have explored investing in on-site solar energy in the past, but did not proceed due to cost.
- Paying a premium can be a non-starter... Unless the organization has a history or value of investing in sustainability.
- Beyond cost, achieving sustainability goals and Public Relations value are the main drivers in solar adoption.
- Public Relations examples:
 - Employee visibility
 - Customer visibility
 - Student education component
 - Competitive advantage versus other industry players
 - Public visibility

- All customers expressed interest in the community solar concept... as long as it is a cost-neutral option.
- One customer cited a target solar cost of \$1.00/W.
- Customers described participation in voluntary sustainability reporting.
 - Carbon Disclosure Project
 - American College & University Presidents' Climate Commitment
- Desired contract length varied dramatically between 1 year and 20 year commitments.

Interview lessons learned

- Opportunity to talk with customers was very favorable
- In-person was much more effective than phone only
- Variety of sustainability approaches ranging from minimal to all in
- Contract term of 3 -5 years was most prevalent
- For most customers, cost is the primary driver
- Customers expect future solar costs to be lower
- Customers seek future cost certainty
- If a corporate anchor customer commits, 1 MW array is too small

Ideas for consideration

- 1. How do these results confirm or differ from your expectations?
- 2. What offering structure will support customers' interests?
- 3. What can we learn from other companies?
- 4. How might we recognize the personal commitments of participants, e.g. window sticker, access to real time solar data?
- 5. What else do we need to consider?

Discussion

Thanks for participating!