

2018 Integrated Resource Plan

Stakeholder Workshop #5

May 30, 2019 Plainfield, IN

Welcome

- Safety message
- Technology
 - Call-in # 866-385-2663
 - Wi-Fi provided as in previous meetings
- Opening Comments
- Introductions

Why are we here today?

- Recap December stakeholder meeting and respond to comments/questions
- Provide a general update on activities done since the Dec meeting
- Review modeling results

Agenda

Time	Торіс
9:00	Registration & Continental Breakfast
9:30	Welcome, Introductions, Agenda
9:50	Review of December Meeting; Responses to Questions/Feedback
10:15	Update since December Meeting
10:30	Review Scenarios & Optimized Portfolios
11:15	Initial Sensitivities and Development of Alternate Portfolios
12:00	Lunch
1:00	Modeling results (Market purchases, CO2 and cost)
2:00	Risk Analysis Sensitivities (Market Purchases & Social Cost of Carbon)
2:45	Next Steps and Closing Comments

Scott Park, Director IRP Analytics - Midwest Review of December Meeting, Comments and Overall Update

Recap of December Meeting

- Review of previous meeting
- Update on EE
- Scenario & Sensitivity discussion
- Optimized portfolios
- Alternate portfolios
- Stakeholder portfolio exercise

Comments from December Meeting

STAKEHOLDER QUESTIONS/COMMENTS	RESPONSES
Stakeholders would like more time to review model inputs	Much of the time since the December meeting has been spent working with stakeholders discussion model inputs as well as model outputs
Duke should model capacity on a UCAP basis	Duke currently models on an ICAP basis (nameplate MW for a generator) and a reserve margin of 15%. Modeling on a UCAP basis is feasible but would also require the long term estimation of outage rates for each generator as well as the MISO planning reserve margin.
EE should be modeled using the decrement approach	We are very willing to discuss alternate ways to model EE, but have concerns about the decrement approach. For example, calculating the cost reduction due to a given decrement in load is straight forward but will be different for each scenario. Additionally, in order to realize those dollar savings, a basket of EE programs must be put together that mimics the shape of the decrement.
Duke should limit the amount of market purchases	We agree that higher levels of market purchases are cause for concern, but do not believe that imposing a constraint on the model is the best approach since that would not happen during actual operations of the system. Based on conversations with stakeholders, we have talked Duke's dispatch team and included a hurdle rate on market purchases that approximates their risk adjusted decision making process. This results in a general reduction in market purchases.

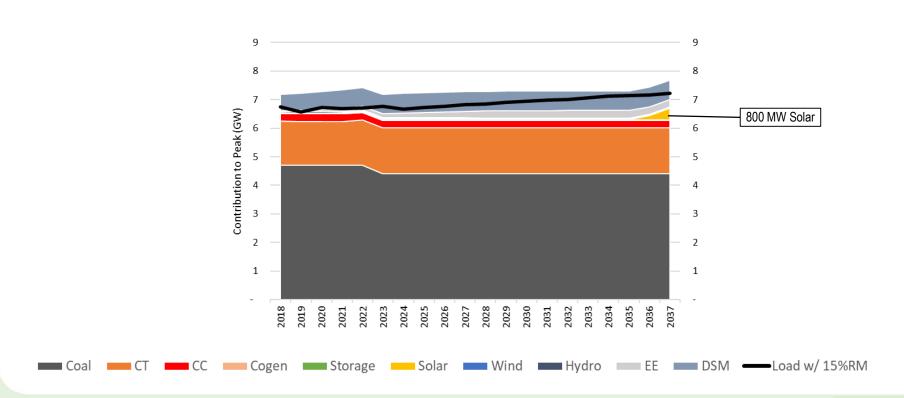
Activities since December meeting

- Worked with CAC and EMCC to develop their own portfolios
 - Made numerous model runs with CAC and EMCC provided inputs, such as
 - Load forecasts and EV charging profiles, solar costs, wind profiles, UCAP basis, EE decrements and CO₂ mass cap
 - Provided portfolio development spreadsheet
- Performing analysis of portfolios in each of the 5 scenarios
- Performed sensitivity analysis

Nate Gagnon – Lead Planning Analyst

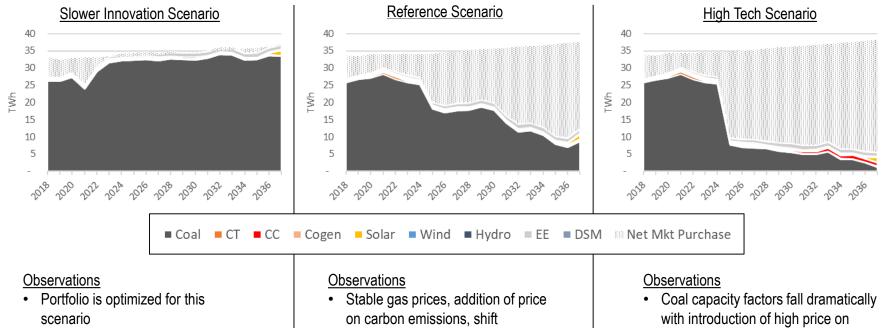
Review of Scenarios & Optimized Portfolios

Scenario Summary



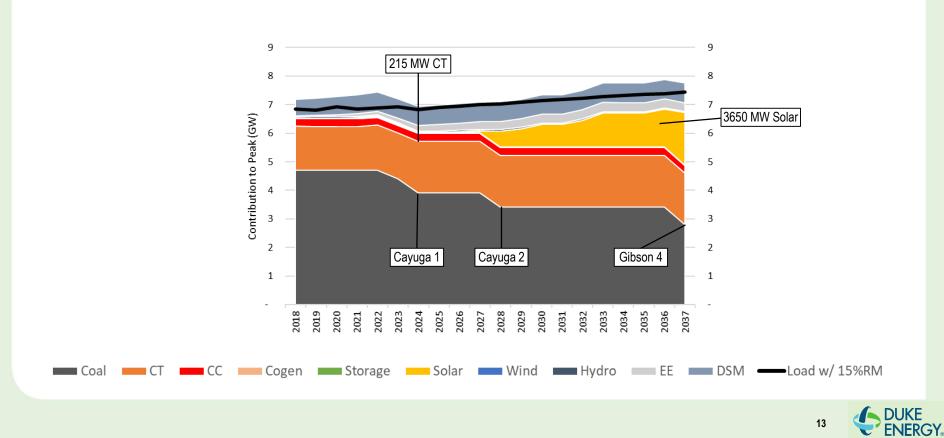
Scenario	Gas Price	Coal Price	Load Forecast	Carbon Price	Cost of Solar & Wind	Cost of EE	PTC & ITC
1) Slower Innovation (High prices)	High	High	Low	None	High	High	Renewed
2) Reference Case (Mid prices)	Mid	Mid	Mid	Mid	Mid	Mid	Expire
3) High Tech Future (Low prices)	Low	Low	High	High	Low	Low	Expire
4) Current Conditions	Market	Market	Mid	None	Mid	Mid	Expire
5) Reference Case, No Carbon	Mid	Mid	Mid	None	Mid	Mid	Expire

Slower Innovation Portfolio

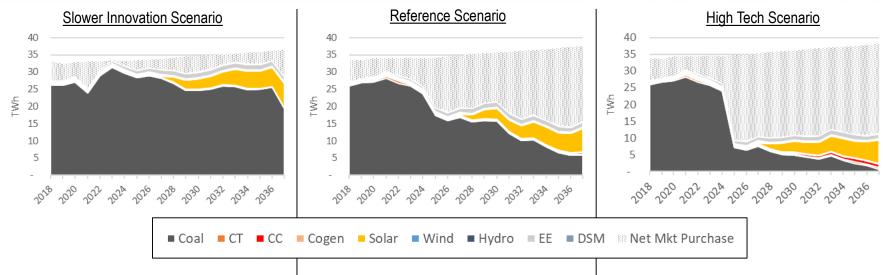


Slower Innovation Energy Mixes

Coal units very competitive in the ٠ energy market, leading to net sales in several years


competitive advantage to market energy

- carbon emissions in 2025
- Low gas prices contribute to market energy being low cost in most hours


Reference Case Portfolio

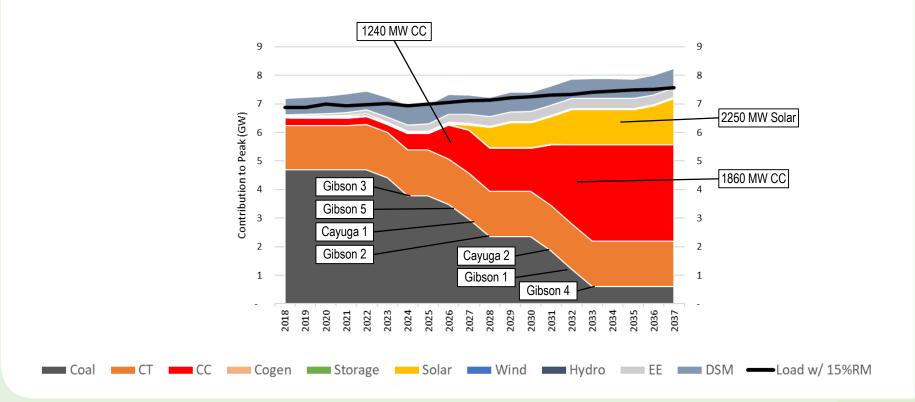
Reference Case Energy Mixes

Observations

- Coal retirements lead to greater market purchases compared with previous portfolios
- Solar replaces some eliminated coal

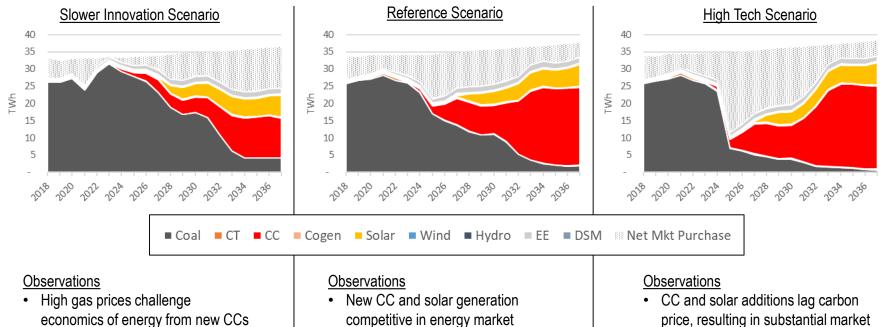
Observations

- Market continues to be economic source of energy in scenarios with carbon price, stagnant gas prices
- Solar displaces some purchases and coal generation

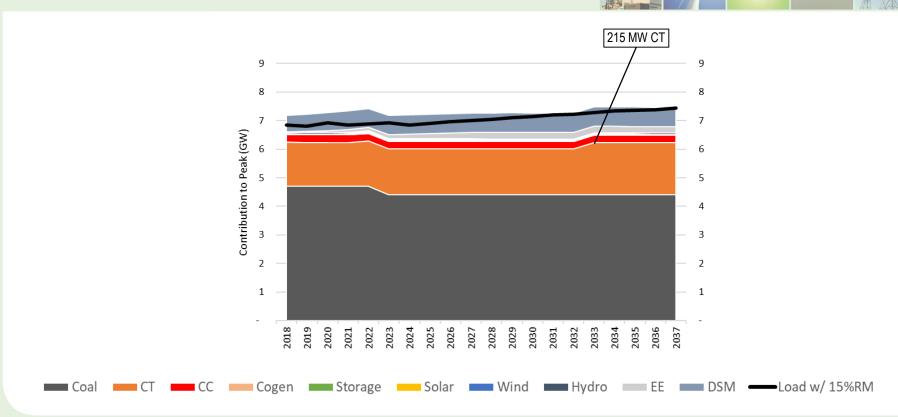

<u>Observations</u>

- Portfolio retains substantial coal capacity leading to reliance on market when carbon price is high
- Solar mitigates impact to a small degree

High Tech Future Portfolio

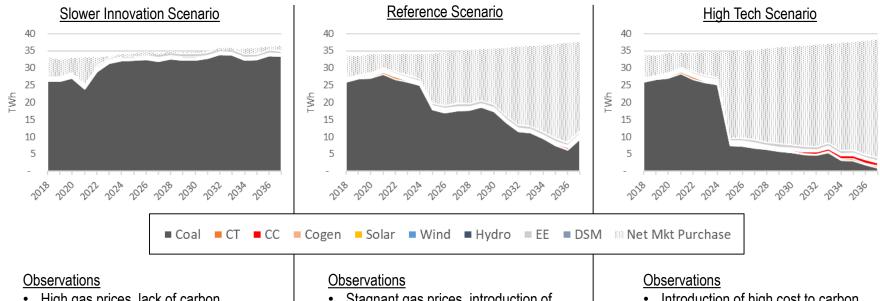


High Tech Future Energy Mixes


Market purchases higher than other ٠ portfolios in this scenario

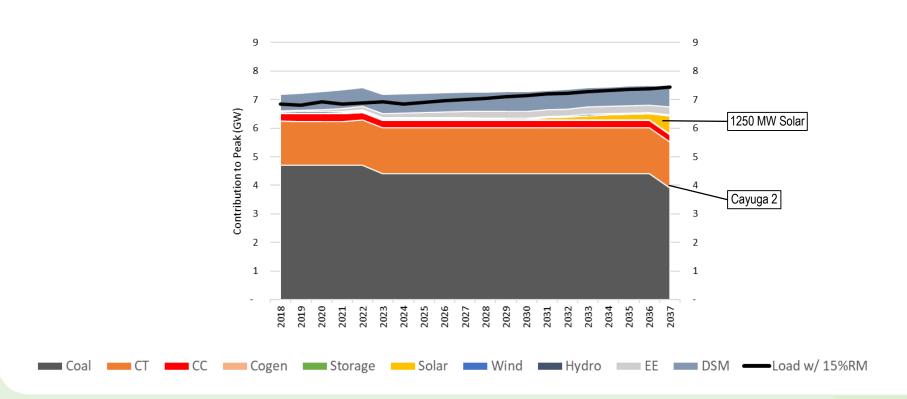
- competitive in energy market
- Market purchases increase when ٠ carbon price is enacted, fall as CC and solar capacity comes online

- price, resulting in substantial market purchases in mid-2020s
- Market reliance diminished as CC capacity ramps up


Current Conditions Portfolio

Current Conditions Energy Mixes

- High gas prices, lack of carbon regulation make coal competitive in the energy market
- Portfolio is net seller in several years


- Stagnant gas prices, introduction of carbon regulation challenge economics of energy from coal
- Economics dictate increasing market purchases over time

- Introduction of high cost to carbon emissions in 2025 dramatically cuts coal unit capacity factors
- Portfolio relies on the market for lowcost energy

Reference w/o CO2 Reg Portfolio

Reference w/o CO₂ Reg Portfolio Energy Mixes

Observations

- With high gas prices and no regulation of carbon emissions, energy need is met with generation from the portfolio
- Net market sales in many years

<u>Observations</u>

 Portfolio is optimized for Reference Scenario without price on carbon. Introducing carbon price reduces portfolio competitiveness, results in increasing reliance on market energy

Observations

 Similar to other portfolios optimized for scenarios with no carbon price, high price on emissions drives native generation out of mix in favor of market purchases

Take-aways from Optimized Portfolios

- The optimized portfolio remains nearly unchanged from the status quo in scenarios with no carbon regulation
- Lower gas prices lead to greater volumes of energy purchased from the market but do not drive portfolio turnover
- Introducing a price on carbon emissions dramatically impacts coal competitiveness, leading to substantial portfolio change
- Even with a high price on carbon, combined-cycle capacity is selected to replace coal, and energy from CCs is competitive in the market
- In solving for the least cost portfolio, the model consistently selects solar over wind. There is
 no dynamic feedback loop for hourly power prices to change as the capacity mix changes

Brian Bak– Lead Planning Analyst

Initial Sensitivity Analysis & Development of Alternate Portfolios

Discussion of Modeling Results

	Why do we create optimized portfolios?	Why do we create alternate portfolios?		
	 Optimized portfolios are a collection of resource decisions that 	 Recognize that optimized portfolios are only optimal for a specific 		
	minimize cost, but ignores unless additional constraints are added	set of assumptions that define the presumed scenario		
	 CO2 emissions 	 Take lessons learned for modeling optimized portfolios to create a 		
	 Market purchase levels 	more robust portfolio that performs well across the range of		
	 Resource/fuel diversity 	scenarios		
	 Plan Flexibility 	 Allows for the development of portfolios that consider cost, CO2, 		
	 Optimized portfolios are instructive in that they give insights on the 	market purchase levels and resource/fuel diversity as well as other		
	trade off between certain resource decisions and cost	important considerations such as annual rate impacts		
	Important Considerations			
	 With respect to cost, there is no portfolio that is optimal in all 5 scenarios 			

- Cost and risk matter- the preferred portfolio needs to address cost, cost variability and a number of risk factors
- Decision points for a portfolio are important and represent that flexibility of a portfolio
- Test a number of portfolios (strategies) across the range of scenarios to understand portfolio performance and risks
- Risk analysis and decision thresholds better understood in Sensitivity Analysis
- All portfolios (optimized and alternate) will compete against one another as they are tested in scenario and sensitivity analysis

High & Low Load Sensitivity

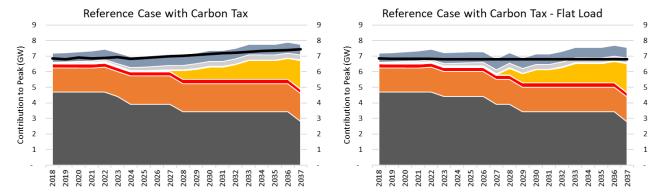
High and low load sensitivities primarily conducted via scenario analysis:

• High

- High Tech Future scenario load forecast CAGR ~15% higher than Reference scenario
- Slight acceleration of new capacity additions choices driven by other factors (CO₂ tax, gas prices)
- Additional energy met via market purchases or higher capacity factors depending on scenario/portfolio combination

Low

- Slow Innovation scenario load forecast CAGR ~15% lower than Reference scenario
- Minimal change in capacity additions driven by other factors (CO₂ tax, gas prices)
- Reduced energy met via reduced market purchases or lower capacity factors depending on scenario/portfolio combination


CAGR	Reference	High Tech Future
MW (Peak)	0.47%	0.55%
MWh (Energy)	0.58%	0.66%

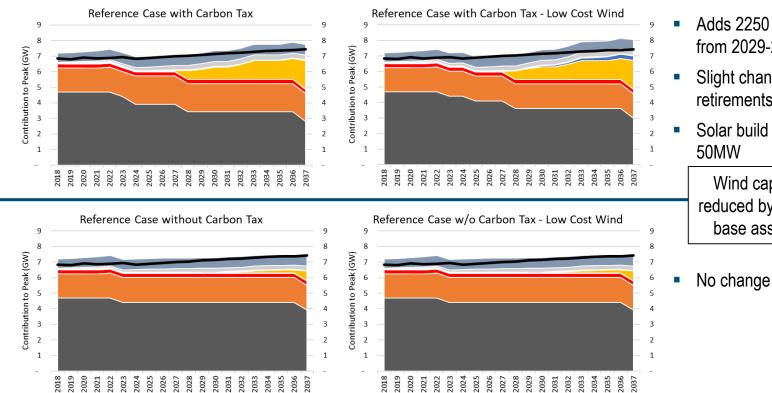
CAGR	Reference	Slow Innovation
MW (Peak)	0.47%	0.39%
MWh (Energy)	0.58%	0.49%

Flat Load Sensitivity

- Delays Cayuga 1 & 2 retirements by 3 and 1 year respectively
- Removes CT
- Adds 50MW additional solar (3700MW total)

- No change in retirements
- Lower CC build 2480MW vs. 3100MW
- Same total solar build (3200MW) with slight timing changes in 2028-2030

Low Gas Cost Sensitivity

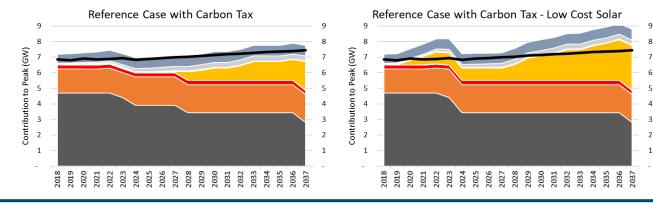


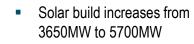
- Low cost gas sensitivities demonstrated through scenario analysis:
 - High-Tech Future: Low cost gas in a carbon constrained future
 - Gas price 28% lower than in Reference Case by 2037
 - Increases combined cycle build relative to Reference Case with CO₂ Regulation
 - Current Conditions: Low cost gas in a future without carbon regulation
 - Gas price 39% lower than in Reference Case by 2037
 - Lower coal generation and increased market purchases relative to Reference Case without CO₂ Regulation

Low Cost of Wind Sensitivity

- Adds 2250 MW wind from 2029-2037
- Slight change in coal retirements
- Solar build reduced by **50MW**

Wind capital cost reduced by 25% from base assumption


Low Cost of Solar Sensitivity

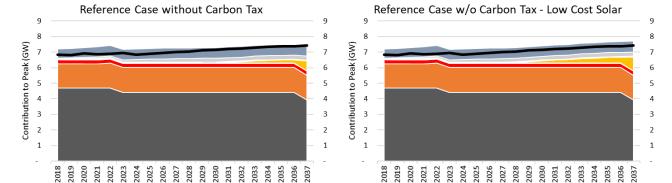


9

8

6

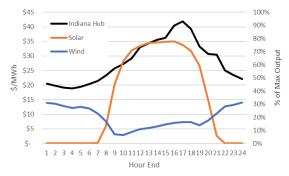
- Accelerates solar build from 2026 to 2020
- Accelerates Cayuga 2 retirement by 4 years

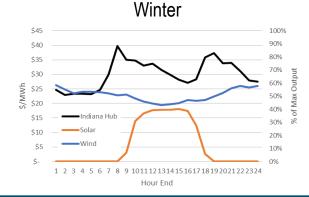

All-in solar cost reduced to \$1,250/kW for first 10 years

- Solar build increases from 1250MW to 1800MW
- First build in 2028 vs. 2031

28

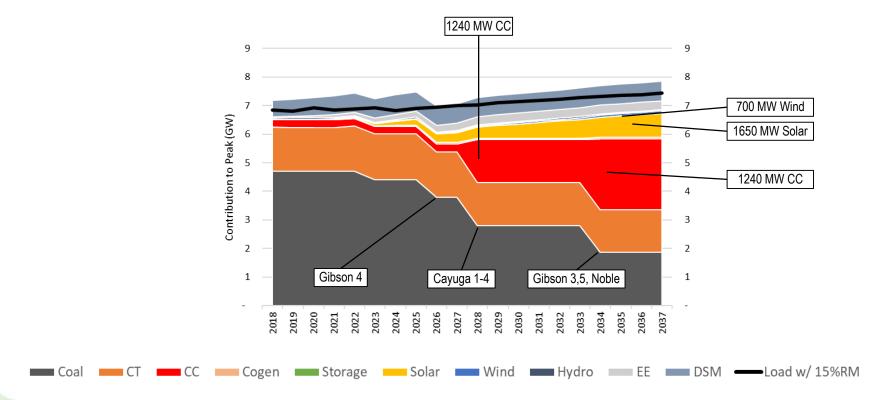
No change in retirements




Economics of Wind vs. Solar

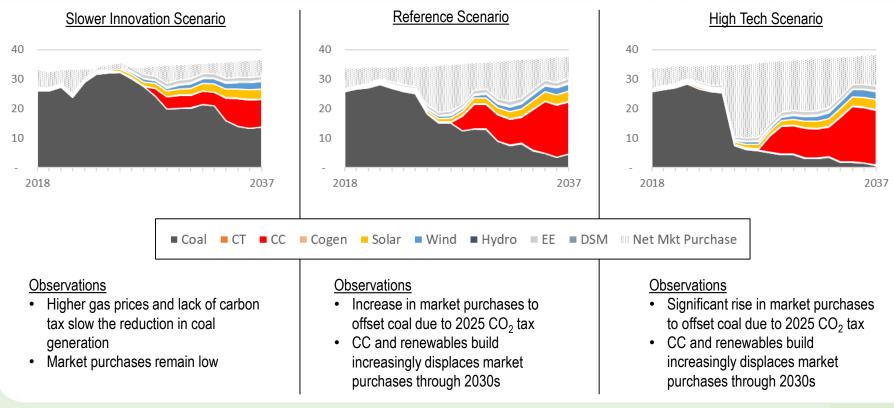
Output vs Power Price, Hourly Averages

Summer

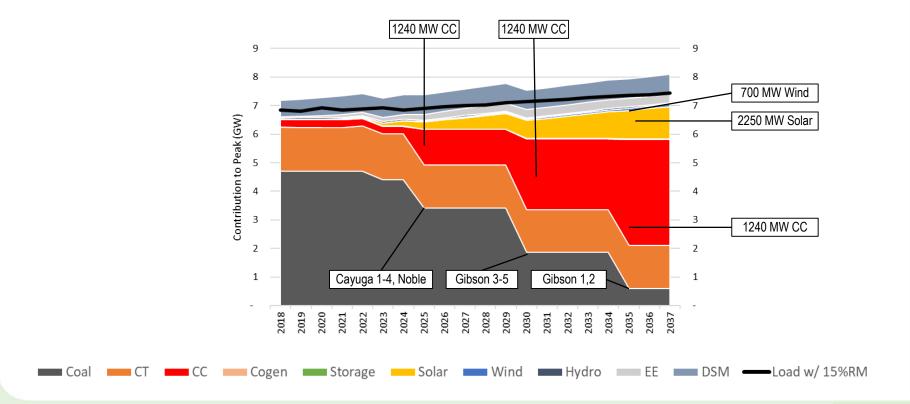

Definitions	
Summer	June – August
Winter	December – February
Power Price	Indiana Hub, 2017 actual
Wind, Solar Output	Forecasts in IRP

CHARACTERISTIC	WIND	SOLAR
Realized Market Power Price	\$29/MWh	\$35/MWh
Contribution to peak	13%	50%
Useful Life	20 years	30 years
Fixed O&M	\$34/kW-yr	\$18/kW-yr
Capacity Factor	39% (increases over time)	24%

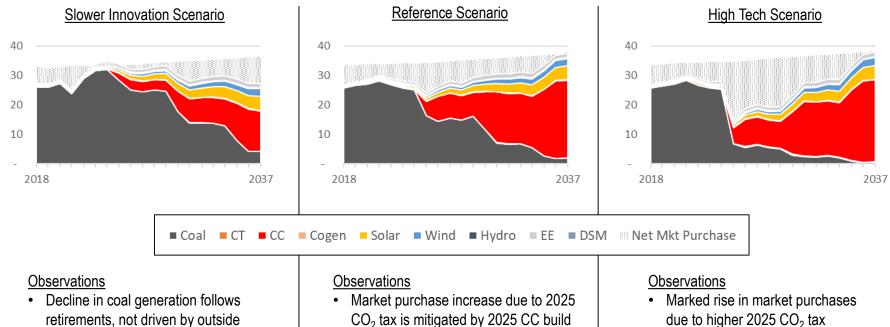
Moderate Transition Portfolio



Moderate Transition Energy Mixes



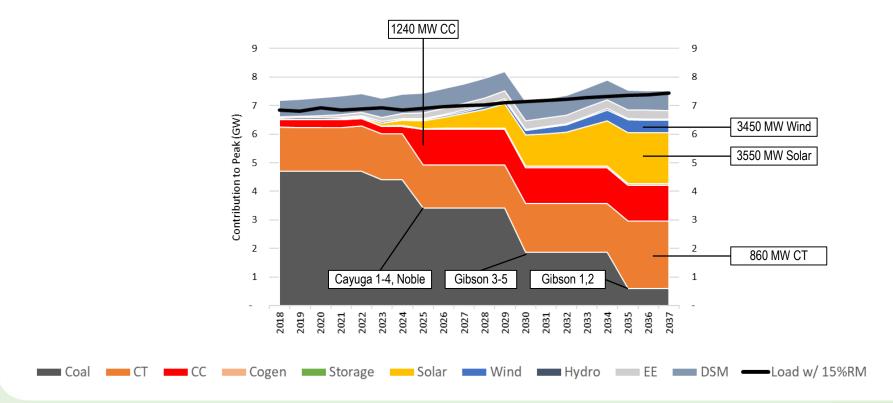
Aggressive Transition Portfolio


Aggressive Transition Energy Mixes

factors (CO₂ tax or fuel prices)

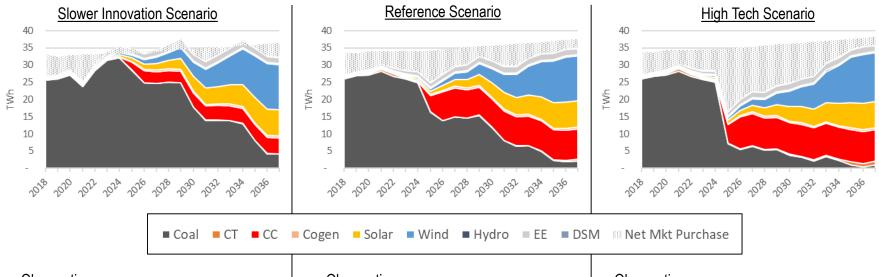
Market purchases remain low

٠


 CC and renewables build increasingly displaces market purchases through 2030s

 CC and renewables build increasingly displaces market purchases through 2030s

Rapid Decarbonization: CT Portfolio



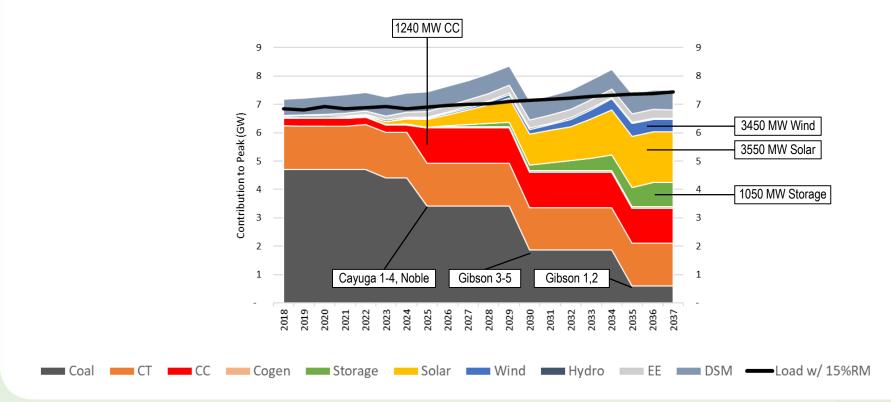
Rapid Decarbonization: CT Energy Mixes

<u>Observations</u>

- Decline in coal generation generally follows unit retirements
- Additions of solar and wind lead to net market sales in years just prior to coal unit retirements

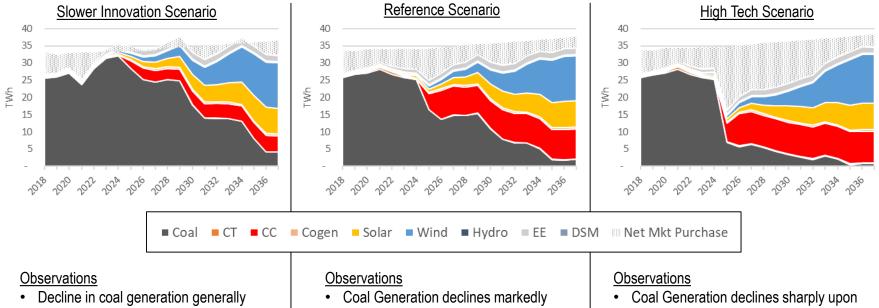
Observations

- Coal Generation declines markedly with 2025 CO₂ tax and continues to decline through unit retirements
- Loss of coal generation largely replaced with renewables and CC


Observations

- Coal Generation declines sharply upon enactment of higher CO₂ tax
- Loss of coal generation replaced initially with market purchases and CC.
 Renewables displace market by mid 2030s

Rapid Decarbonization: Storage Portfolio



Rapid Decarbonization: Storage Energy Mixes

- follows retirements
- Additions of solar and wind lead to net market sales in years just prior to coal retirements

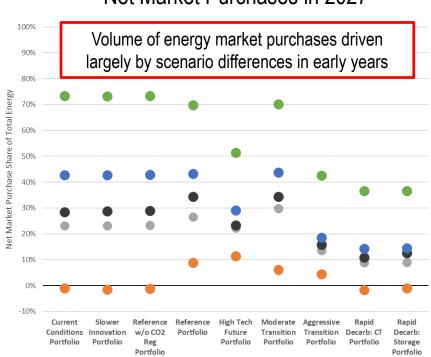
- Coal Generation declines markedly with 2025 CO₂ tax and continues to decline through retirements
- Loss of coal generation largely replaced with renewables and CC

- Coal Generation declines sharply upon enactment of higher CO₂ tax
- Loss of coal generation replaced initially with market purchases and CC.
 Renewables displace market by mid 2030s

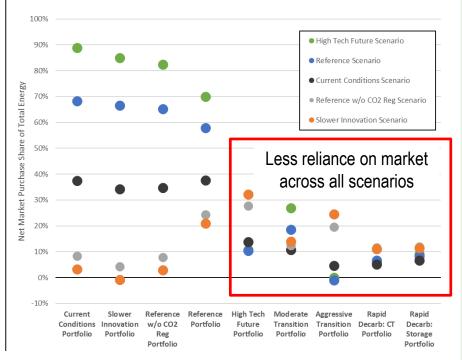
Lunch

38

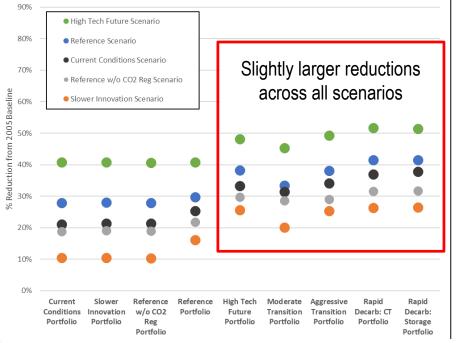
Nate Gagnon– Lead Planning Analyst

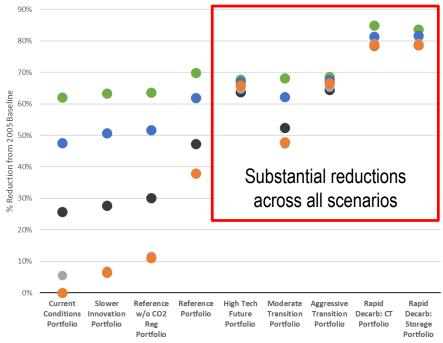

Modeling Results – Market Purchases, CO2 Emissions & Cost

39


Market Purchases by Portfolio

Net Market Purchases in 2027


Net Market Purchases in 2037



CO₂ Emissions Reduction by Portfolio

Reduction by 2027 from 2005 Baseline

Reduction by 2037 from 2005 Baseline

PVRR by Portfolio

\$4

\$2

\$0

Current

Conditions

Portfolio

Slower

Innovation

Portfolio

Reference

w/o CO2

Reg

Portfolio

Reference

Portfolio

Investments Through 2027 Ś18 High Tech Future Scenario \$16 Reference Scenario Slower Innovation Scenario \$14 Reference w/o CO2 Reg Scenario \$12 Current Conditions Scenario \$10 \$10 \$ \$6 Little divergence across either portfolios or

scenarios

High Tech

Future

Portfolio

Moderate

Transition

Portfolio

Aggressive

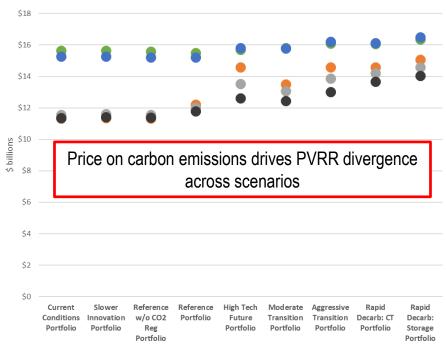
Transition

Portfolio

Rapid

Decarb: CT

Portfolio


Rapid

Decarb:

Storage

Portfolio

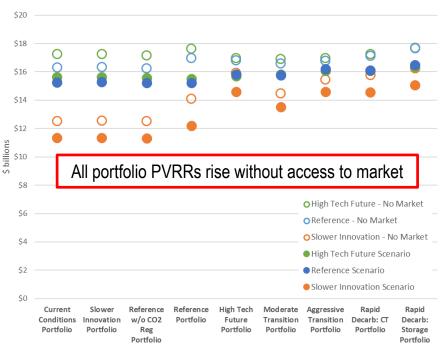
Investments Through 2037

Take-aways from Scenario Analysis

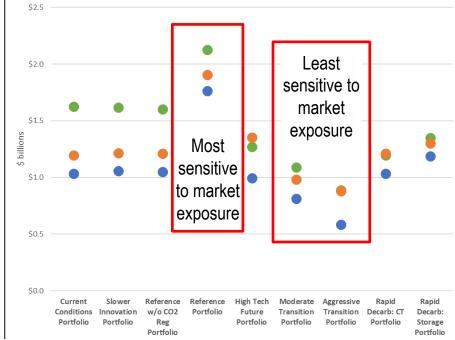
- Putting a price on carbon emissions drives up cost regardless of portfolio. The cost increase is greatest for coal-heavy portfolios
- Portfolios with more gas and renewables show greater emissions reductions in all scenarios and less market exposure in scenarios with a price on carbon
- Coal-heavy portfolios show only small reductions in carbon emissions in scenarios that lack a price on carbon. Reductions are achieved largely by purchasing energy from the market (carbon intensity of market purchases is lower in scenarios with price on carbon as MISO fleet transitions toward gas and renewables)
- Portfolios with more gas and renewables are higher cost in scenarios with mid or high gas prices and no carbon price (Current Conditions, Reference w/o CO₂ Reg)
- Portfolios with the most renewables are most costly in scenarios without a price on carbon

Brian Bak– Lead Planning Analyst

Risk Sensitivity Analysis


Sensitivity Analysis

- In addition to the 45 combinations of portfolios and scenarios analyses, sensitivity analysis was performed to test each of the portfolios on:
 - Market purchase exposure
 - Social Cost of Carbon



Market Risk (20 years)

PVRR With and Without the MISO Energy Market

PVRR Change When Market is Unavailable

Social Cost of Carbon Sensitivity

- At the request of stakeholders the table below shows the 20 year PVRR's of the portfolios where the cost of each portfolio includes the social cost of carbon for each ton emitted.
 - Social Cost of Carbon figures from Table A1, Appendix A of Technical Support Document: Technical Update of the Social Cost of Carbon for Regulatory Impact Analysis Under Executive Order 12866, August 2016¹
 - SCC \$/ton based on 2.5% discount rate column in Table A1
 - Tons of CO₂ include Duke Energy emissions and estimated emissions associated with market purchases
 - Figures shown below are under the Reference Case without a CO₂ Tax to avoid double-counting of carbon costs

			POF	RTFOLIO PVRR (\$M	/M)			
Current Conditions	Slower Innovation	Reference w/o CO ₂ Reg	Reference	High Tech Future	Moderate Transition	Aggressive Transition	Rapid Decarbonization CT	Rapid Decarbonization Storage
\$51,815	\$51,737	\$51,597	\$48,769	\$44,923	\$47,383	\$46,546	\$45,271	\$45,545

1. https://www.epa.gov/sites/production/files/2016-12/documents/sc_co2_tsd_august_2016.pdf

Take-aways from Sensitivity Analysis

- Market purchase exposure
 - All portfolios exhibited higher PVRR when market purchases were unavailable
 - Certain portfolios mitigated market risk more effectively based on the timing and magnitude of resource diversification and types of resources selected.
- Social Cost of Carbon (SCC)
 - Internalizing the EPAs estimated SCC dramatically increases the cost of all portfolios.
 - The portfolios which transition away from coal more completely and rapidly exhibit a lower total cost when SCC is included.

Next Meeting Thursday, June 20th

- Present Preferred Portfolio
- Time: 2:00 4:00 PM
- Location: Plainfield Office Auditorium
- Final IRP document to be submitted on July 1

Heather Quinley, Director Energy Affairs & Stakeholder Engagement Closing Comments, Stakeholder Comments

Closing Comments

- Please complete comment cards or send by June 6th to Scott at: scott.park@duke-energy.com
- Meeting summary and other materials will be posted on website by June 7th
 - (http://www.duke-energy.com/indiana/in-irp-2018.asp)
- Next workshop on June 20th

Appendix

52

SLOWER INNOVATION	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037
RETIREMENTS																				
Unit					Ga	llagher	2,4													
Nameplate MW						280														
EE - Contribution to Peak																				
EE	27	53	75	98	120	142	165	186	205	225	242	254	259	260	264	269	268	262	255	254
CUMULATIVE ADDITIONS - Nameplate																				
																			200	
Solar	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	300	800
Wind	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Storage	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
СНР	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CC	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
СТ	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

REFERENCE CASE	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037
RETIREMENTS																				
Unit						Gall 2,4	Cay 1				Cayuga	2								Gibson 4
Nameplate MW						280	500				495									622
EE - Contribution to Peak																				
EE	27	53	75	101	130	158	189	221	247	273	292	306	312	311	317	324	323	316	310	305
CUMULATIVE ADDITIONS - Nameplate																				
Solar	-	-	-	-	-	-	-	-	50	100	1,100	1,250	1,550	1,550	1,850	2,350	2,350	2,350	2,650	3,650
Wind	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Storage	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
СНР	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CC	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
СТ	-	-	-	-	-	-	215	215	215	215	215	215	215	215	215	215	215	215	215	215

HIGH TECH FUTURE	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037
RETIREMENTS																				
Unit						Gall 2,4	Gib 3		Gib 5	Cay 1	Gib 2			Cay 2	Gib 1	Gib 4				
Nameplate MW						280	630		310	500	630			495	630	622				
EE - Contribution to Peak																				
EE	27	53	75	105	142	177	216	253	283	310	331	345	350	346	350	356	354	346	340	334
CUMULATIVE ADDITIONS - Nameplate																				
Solar	-	-	-	-	-	-	-	-	-	300	1,400	1,700	1,700	1,900	2,400	2,400	2,400	2,400	2,700	3,200
Wind	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Storage	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
СНР	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CC	-	-	-	-	-	-	310	310	930	1,240	1,240	1,240	1,240	1,860	2,480	3,100	3,100	3,100	3,100	3,100
СТ	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

CURRENT CONDITIONS	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037
RETIREMENTS																				
Unit					Ga	lagher	2,4													
Nameplate MW						280														
EE - Contribution to Peak																				
EE	27	53	75	96	115	134	157	181	202	218	228	233	231	226	226	231	228	223	219	219
CUMULATIVE ADDITIONS - Nameplate																				
Solar	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Wind	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Storage	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
СНР	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CC	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
СТ	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	215	215	215	215	215

REFERENCE CASE W/O CO2 TAX	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037
RETIREMENTS																				
Unit					Ga	lagher	2,4													Cayuga 2
Nameplate MW						280														495
EE - Contribution to Peak																				
EE	27	53	75	96	115	134	156	177	196	214	229	238	240	239	246	256	260	259	261	264
CUMULATIVE ADDITIONS - Nameplate																				
Solar	-	-	-	-	-	-	-	-	-	-	-	-	-	100	150	250	300	350	400	1250
Wind	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Storage	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
СНР	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
СС	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
СТ	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

MODERATE TRANSITION	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037
RETIREMENTS																				
Unit Nameplate MW					Ga	llagher 2 280	2,4		Gib 4 622		Cay 1-4 1085				Gib	3,5, No 1204	ble			
EE - Contribution to Peak																				
EE	27	53	75	99	123	147	174	203	226	252	271	286	292	293	300	308	309	304	300	298
CUMULATIVE ADDITIONS - Nameplate																				
Solar	-	-	-	-	-	100	250	400	550	650	750	850	950	1,050	1,150	1,250	1,350	1,450	1,550	1,650
Wind	-	-	-	-	-	-	50	100	150	200	250	300	350	400	450	500	550	600	650	700
Storage	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CHP	-	-	-	-	-	-	20	20	40	40	40	40	40	40	40	40	40	40	40	40
CC	-	-	-	-	-	-	-	-	-	-	1,240	1,240	1,240	1,240	1,240	1,240	2,480	2,480	2,480	2,480
СТ	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

AGGRESSIVE TRANSITION	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037
RETIREMENTS																				
<u>RETIREMENTS</u> Unit					62	llaghar		1 4 No	blo			Gib 3-5						Gib 1-2		
					Ga		2,4 Cay	1-4; No	bie			1562						1260		
Nameplate MW						280		1349				1002						1200		
EE - Contribution to Peak																				
EE	27	53	75	98	120	142	168	197	220	246	266	281	287	289	297	306	307	303	299	297
CUMULATIVE ADDITIONS - Nameplate																				
Solar	-	-	-	-	-	150	300	450	600	750	900	1,050	1,200	1,350	1,500	1,650	1,800	1,950	2,100	2,250
Wind	-	-	-	-	-	-	50	100	150	200	250	300	350	400	450	500	550	600	650	700
Storage	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
СНР	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
СС	-	-	-	-	-	-	-	1,240	1,240	1,240	1,240	1,240	2,480	2,480	2,480	2,480	2,480	3,720	3,720	3,720
СТ	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

RAPID DECARBONIZATION - CT	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037
RETIREMENTS																				
Unit					Ga	llagher	2,4 Cay	1-4; No	ble			Gib 3-5						Gib 1-2		
Nameplate MW						280		1349				1562						1260		
EE - Contribution to Peak																				
EE	27	53	75	109	153	193	233	276	309	338	366	383	390	388	390	394	393	386	377	370
	27	55	75	105	155	155	255	270	505	550	500	505	550	500	550	554	555	500	5//	570
CUMULATIVE ADDITIONS - Nameplate																				
Solar	-	-	-	-	-	150	300	500	700	950	1,250	1,650	2,150	2,250	2,350	2,750	3,150	3,550	3,550	3,550
Wind	-	-	-	-	-	-	100	200	350	500	700	950	1,250	1,600	2,000	2,450	2,950	3,450	3,450	3,450
Storage	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
СНР	-	-	-	-	-	-	20	20	40	40	40	40	40	40	40	40	40	40	40	40
CC	-	-	-	-	-	-	-	1,240	1,240	1,240	1,240	1,240	1,240	1,240	1,240	1,240	1,240	1,240	1,240	1,240
СТ	-	-	-	-	-	-	-	-	-	-	-	-	215	215	215	215	215	860	860	860

RAPID DECARBONIZATION - STORAGE	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037
RETIREMENTS																				
Unit					Ga	llagher	2,4 Cay	/ 1-4; No	ble			Gib 3-5						Gib 1-2		
Nameplate MW						280		1349				1562						1260		
EE - Contribution to Peak																				
EE	27	53	75	109	153	193	233	276	309	338	366	383	390	388	390	394	393	386	377	370
CUMULATIVE ADDITIONS - Nameplate																				
Solar	-	-	-	-	-	150	300	500	700	950	1,250	1,650	2,150	2,250	2,350	2,750	3,150	3,550	3,550	3,550
Wind	-	-	-	-	-	-	100	200	350	500	700	950	1,250	1,600	2,000	2,450	2,950	3,450	3,450	3,450
Storage	-	-	-	-	-	-	-	-	50	100	150	200	250	350	450	550	700	850	1,050	1,050
СНР	-	-	-	-	-	-	20	20	40	40	40	40	40	40	40	40	40	40	40	40
СС	-	-	-	-	-	-	-	1,240	1,240	1,240	1,240	1,240	1,240	1,240	1,240	1,240	1,240	1,240	1,240	1,240
СТ	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

